留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 21 Issue 4
Apr.  2014
数据统计

分享

计量
  • 文章访问数:  421
  • HTML全文浏览量:  82
  • PDF下载量:  21
  • 被引次数: 0
Deepshikha Rathore, Rajnish Kurchania,  and R. K. Pandey, Influence of particle size and temperature on the dielectric properties of CoFe2O4 nanoparticles, Int. J. Miner. Metall. Mater., 21(2014), No. 4, pp. 408-414. https://doi.org/10.1007/s12613-014-0923-8
Cite this article as:
Deepshikha Rathore, Rajnish Kurchania,  and R. K. Pandey, Influence of particle size and temperature on the dielectric properties of CoFe2O4 nanoparticles, Int. J. Miner. Metall. Mater., 21(2014), No. 4, pp. 408-414. https://doi.org/10.1007/s12613-014-0923-8
引用本文 PDF XML SpringerLink

Influence of particle size and temperature on the dielectric properties of CoFe2O4 nanoparticles

  • 通讯作者:

    Deepshikha Rathore    E-mail: deep.nano@gmail.com

  • The objective of this study was to establish the dielectric properties of CoFe2O4 nanoparticles with particle sizes that varied from 28.6 to 5.8 nm. CoFe2O4 nanoparticles were synthesized using a chemical coprecipitation method. The particle sizes were calculated according to the Scherrer formula using X-ray diffraction (XRD) peaks, and the particle size distribution curves were constructed by using field-emission scanning electron microscopy (FESEM) images. The dielectric permittivity and loss tangents of the samples were determined in the frequency range of 1 kHz to 1 MHz and in the temperature range of 300 to 10 K. Both the dielectric permittivity and the loss tangent were found to decrease with increasing frequency and decreasing temperature. For the smallest CoFe2O4 nanoparticle size, the dielectric permittivity and loss tangent exhibited their highest and lowest values, respectively. This behavior is very useful for materials used in devices that operate in the microwave or radio frequency ranges.
  • Influence of particle size and temperature on the dielectric properties of CoFe2O4 nanoparticles

    + Author Affiliations
    • The objective of this study was to establish the dielectric properties of CoFe2O4 nanoparticles with particle sizes that varied from 28.6 to 5.8 nm. CoFe2O4 nanoparticles were synthesized using a chemical coprecipitation method. The particle sizes were calculated according to the Scherrer formula using X-ray diffraction (XRD) peaks, and the particle size distribution curves were constructed by using field-emission scanning electron microscopy (FESEM) images. The dielectric permittivity and loss tangents of the samples were determined in the frequency range of 1 kHz to 1 MHz and in the temperature range of 300 to 10 K. Both the dielectric permittivity and the loss tangent were found to decrease with increasing frequency and decreasing temperature. For the smallest CoFe2O4 nanoparticle size, the dielectric permittivity and loss tangent exhibited their highest and lowest values, respectively. This behavior is very useful for materials used in devices that operate in the microwave or radio frequency ranges.
    • loading

    Catalog


    • /

      返回文章
      返回