留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 22 Issue 5
May  2015
数据统计

分享

计量
  • 文章访问数:  323
  • HTML全文浏览量:  88
  • PDF下载量:  10
  • 被引次数: 0
Yong-jie Bu, Run-qing Liu, Wei Sun,  and Yue-hua Hu, Synergistic mechanism between SDBS and oleic acid in anionic flotation of rhodochrosite, Int. J. Miner. Metall. Mater., 22(2015), No. 5, pp. 447-452. https://doi.org/10.1007/s12613-015-1092-0
Cite this article as:
Yong-jie Bu, Run-qing Liu, Wei Sun,  and Yue-hua Hu, Synergistic mechanism between SDBS and oleic acid in anionic flotation of rhodochrosite, Int. J. Miner. Metall. Mater., 22(2015), No. 5, pp. 447-452. https://doi.org/10.1007/s12613-015-1092-0
引用本文 PDF XML SpringerLink

Synergistic mechanism between SDBS and oleic acid in anionic flotation of rhodochrosite

  • 通讯作者:

    Run-qing Liu    E-mail: liurunqing@126.com

  • Pure mineral flotation experiments, zeta potential testing, and infrared spectroscopy were employed to investigate the interfacial reactions of oleic acid (collector), sodium dodecyl benzene sulfonate (SDBS, synergist), and rhodochrosite in an anionic system. The pure mineral test shows that oleic acid has a strong ability to collect products on rhodochrosite. Under neutral to moderately alkaline conditions, low temperature (e.g., 10℃) adversely affects the flotation performance of oleic acid; the addition of SDBS significantly improves the dispersion and solubility of oleic acid, enhancing its collecting ability and flotation recovery. The zeta potential test shows that rhodochrosite interacts with oleic acid and SDBS, resulting in a more negative zeta potential and the co-adsorption of the collector and synergist at the mineral surface. Infrared spectroscopy demonstrated that when oleic acid and SDBS are used as a mixed collector, oleates along with -COO- and -COOH functional groups are formed on the mineral surface, indicating chemical adsorption on rhodochrosite. The results demonstrate that oleic acid and SDBS co-adsorb chemically on the surface of rhodochrosite, thereby improving the flotation performance of the collector.
  • Synergistic mechanism between SDBS and oleic acid in anionic flotation of rhodochrosite

    + Author Affiliations
    • Pure mineral flotation experiments, zeta potential testing, and infrared spectroscopy were employed to investigate the interfacial reactions of oleic acid (collector), sodium dodecyl benzene sulfonate (SDBS, synergist), and rhodochrosite in an anionic system. The pure mineral test shows that oleic acid has a strong ability to collect products on rhodochrosite. Under neutral to moderately alkaline conditions, low temperature (e.g., 10℃) adversely affects the flotation performance of oleic acid; the addition of SDBS significantly improves the dispersion and solubility of oleic acid, enhancing its collecting ability and flotation recovery. The zeta potential test shows that rhodochrosite interacts with oleic acid and SDBS, resulting in a more negative zeta potential and the co-adsorption of the collector and synergist at the mineral surface. Infrared spectroscopy demonstrated that when oleic acid and SDBS are used as a mixed collector, oleates along with -COO- and -COOH functional groups are formed on the mineral surface, indicating chemical adsorption on rhodochrosite. The results demonstrate that oleic acid and SDBS co-adsorb chemically on the surface of rhodochrosite, thereby improving the flotation performance of the collector.
    • loading

    Catalog


    • /

      返回文章
      返回