Cite this article as: |
Yi-zhong Yuan, Yi-min Zhang, Tao Liu, and Tie-jun Chen, Comparison of the mechanisms of microwave roasting and conventional roasting and of their effects on vanadium extraction from stone coal, Int. J. Miner. Metall. Mater., 22(2015), No. 5, pp. 476-482. https://doi.org/10.1007/s12613-015-1096-9 |
Yi-min Zhang E-mail: zym126135@126.com
Experiments comparing microwave blank roasting and conventional blank roasting for typical vanadium-bearing stone coal from Hubei Province in central China, in which vanadium is present in muscovite, were conducted to investigate the effects of roasting temperature, roasting time, H2SO4 concentration, and leaching time on vanadium extraction. The results show that the vanadium leaching efficiency is 84% when the sample is roasted at 800℃ for 30 min by microwave irradiation and the H2SO4 concentration, liquid/solid ratio, leaching temperature, and leaching time are set as 20vol%, 1.5:1 mL·g-1, 95℃, and 8 h, respectively. However, the vanadium leaching efficiency achieved for the sample subjected to conventional roasting at 900℃ for 60 min is just 71% under the same leaching conditions. Scanning electron microscopy (SEM) analysis shows that the microwave roasted samples contain more cracks and that the particles are more porous compared to the conventionally roasted samples. According to the results of X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses, neither of these roasting methods could completely destroy the mica lattice structure under the experimental conditions; however, both methods deformed the muscovite structure and facilitated the leaching process. Comparing with conventional roasting, microwave roasting causes a greater deformation of the mineral structure at a lower temperature for a shorter roasting time.
Experiments comparing microwave blank roasting and conventional blank roasting for typical vanadium-bearing stone coal from Hubei Province in central China, in which vanadium is present in muscovite, were conducted to investigate the effects of roasting temperature, roasting time, H2SO4 concentration, and leaching time on vanadium extraction. The results show that the vanadium leaching efficiency is 84% when the sample is roasted at 800℃ for 30 min by microwave irradiation and the H2SO4 concentration, liquid/solid ratio, leaching temperature, and leaching time are set as 20vol%, 1.5:1 mL·g-1, 95℃, and 8 h, respectively. However, the vanadium leaching efficiency achieved for the sample subjected to conventional roasting at 900℃ for 60 min is just 71% under the same leaching conditions. Scanning electron microscopy (SEM) analysis shows that the microwave roasted samples contain more cracks and that the particles are more porous compared to the conventionally roasted samples. According to the results of X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses, neither of these roasting methods could completely destroy the mica lattice structure under the experimental conditions; however, both methods deformed the muscovite structure and facilitated the leaching process. Comparing with conventional roasting, microwave roasting causes a greater deformation of the mineral structure at a lower temperature for a shorter roasting time.