留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 23 Issue 9
Sep.  2016
数据统计

分享

计量
  • 文章访问数:  242
  • HTML全文浏览量:  65
  • PDF下载量:  9
  • 被引次数: 0
M. M. S. Sanad and M. M. Rashad, Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore, Int. J. Miner. Metall. Mater., 23(2016), No. 9, pp. 991-1000. https://doi.org/10.1007/s12613-016-1316-y
Cite this article as:
M. M. S. Sanad and M. M. Rashad, Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore, Int. J. Miner. Metall. Mater., 23(2016), No. 9, pp. 991-1000. https://doi.org/10.1007/s12613-016-1316-y
引用本文 PDF XML SpringerLink

Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore

  • 通讯作者:

    M. M. S. Sanad    E-mail: mustafa_sanad2002@yahoo.com

  • Ultrafine barium hexaferrite (BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe (~99.7%) under the optimum conditions. The hexaferrite precursors were obtained by the co-precipitation of BaS produced by the reduction of barite ore with carbon at 1273 K and then dissolved in diluted HCl and FeCl3 solution at pH 10 using NaOH as a base; the product was then annealed at 1273 K in an open atmosphere. The effect of Fe3+/Ba2+ molar ratio and the addition of hydrogen peroxide (H2O2) on the phase structure, crystallite size, morphology, and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. Single-phase BaFe12O19 powder was obtained at an Fe3+/Ba2+ molar ratio of 8.00. The formed powders exhibited a hexagonal platelet-like structure. Good maximum magnetization (48.3 A·m2·kg–1) was achieved in the material prepared at an Fe3+/Ba2+ molar ratio of 8.0 in the presence of 5% H2O2 as an oxidizer and at 1273 K because of the formation of a uniform, hexagonal-shaped structure.
  • Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore

    + Author Affiliations
    • Ultrafine barium hexaferrite (BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe (~99.7%) under the optimum conditions. The hexaferrite precursors were obtained by the co-precipitation of BaS produced by the reduction of barite ore with carbon at 1273 K and then dissolved in diluted HCl and FeCl3 solution at pH 10 using NaOH as a base; the product was then annealed at 1273 K in an open atmosphere. The effect of Fe3+/Ba2+ molar ratio and the addition of hydrogen peroxide (H2O2) on the phase structure, crystallite size, morphology, and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. Single-phase BaFe12O19 powder was obtained at an Fe3+/Ba2+ molar ratio of 8.00. The formed powders exhibited a hexagonal platelet-like structure. Good maximum magnetization (48.3 A·m2·kg–1) was achieved in the material prepared at an Fe3+/Ba2+ molar ratio of 8.0 in the presence of 5% H2O2 as an oxidizer and at 1273 K because of the formation of a uniform, hexagonal-shaped structure.
    • loading

    Catalog


    • /

      返回文章
      返回