Hui-yan Li, Chao-fang Dong, Kui Xiao, Xiao-gang Li, and Ping Zhong, Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel, Int. J. Miner. Metall. Mater., 23(2016), No. 11, pp. 1286-1293. https://doi.org/10.1007/s12613-016-1350-9
Cite this article as:
Hui-yan Li, Chao-fang Dong, Kui Xiao, Xiao-gang Li, and Ping Zhong, Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel, Int. J. Miner. Metall. Mater., 23(2016), No. 11, pp. 1286-1293. https://doi.org/10.1007/s12613-016-1350-9
Hui-yan Li, Chao-fang Dong, Kui Xiao, Xiao-gang Li, and Ping Zhong, Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel, Int. J. Miner. Metall. Mater., 23(2016), No. 11, pp. 1286-1293. https://doi.org/10.1007/s12613-016-1350-9
Citation:
Hui-yan Li, Chao-fang Dong, Kui Xiao, Xiao-gang Li, and Ping Zhong, Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel, Int. J. Miner. Metall. Mater., 23(2016), No. 11, pp. 1286-1293. https://doi.org/10.1007/s12613-016-1350-9
The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.
The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.