Cite this article as:

Tao Peng, Qing-zhi Yan, Yan Zhang, Xiao-jiao Shi, and Ming-yang Ba, Low-cost solid FeS lubricant as a possible alternative to MoS2 for producing Fe-based friction materials, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp.115-121. https://dx.doi.org/10.1007/s12613-017-1385-6
Tao Peng, Qing-zhi Yan, Yan Zhang, Xiao-jiao Shi, and Ming-yang Ba, Low-cost solid FeS lubricant as a possible alternative to MoS2 for producing Fe-based friction materials, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp.115-121. https://dx.doi.org/10.1007/s12613-017-1385-6
引用本文 PDF XML SpringerLink

Low-cost solid FeS lubricant as a possible alternative to MoS2 for producing Fe-based friction materials

摘要: Three reaction systems of MoS2-Fe, FeS-Fe, and FeS-Fe-Mo were designed to investigate the use of FeS as an alternative to MoS2 for producing Fe-based friction materials. Samples were prepared by powder metallurgy, and their phase compositions, microstructures, mechanical properties, and friction performance were characterized. The results showed that MoS2 reacts with the matrix to produce iron-sulfides and Mo when sintered at 1050℃. Iron-sulfides produced in the MoS2-Fe system were distributed uniformly and continuously in the matrix, leading to optimal mechanical properties and the lowest coefficient of friction among the systems studied. The lubricity observed was hypothesized to originate from the iron-sulfides produced. The FeS-Fe-Mo system showed a phase composition, porosity, and density similar to those of the MoS2-Fe system, but an uneven distribution of iron-sulfides and Mo in this system resulted in less-optimal mechanical properties. Finally, the FeS-Fe system showed the poorest mechanical properties among the systems studied because of the lack of Mo reinforcement. In friction tests, the formation of a sulfide layer contributed to a decrease in coefficient of friction (COF) in all of the samples.

 

Low-cost solid FeS lubricant as a possible alternative to MoS2 for producing Fe-based friction materials

Abstract: Three reaction systems of MoS2-Fe, FeS-Fe, and FeS-Fe-Mo were designed to investigate the use of FeS as an alternative to MoS2 for producing Fe-based friction materials. Samples were prepared by powder metallurgy, and their phase compositions, microstructures, mechanical properties, and friction performance were characterized. The results showed that MoS2 reacts with the matrix to produce iron-sulfides and Mo when sintered at 1050℃. Iron-sulfides produced in the MoS2-Fe system were distributed uniformly and continuously in the matrix, leading to optimal mechanical properties and the lowest coefficient of friction among the systems studied. The lubricity observed was hypothesized to originate from the iron-sulfides produced. The FeS-Fe-Mo system showed a phase composition, porosity, and density similar to those of the MoS2-Fe system, but an uneven distribution of iron-sulfides and Mo in this system resulted in less-optimal mechanical properties. Finally, the FeS-Fe system showed the poorest mechanical properties among the systems studied because of the lack of Mo reinforcement. In friction tests, the formation of a sulfide layer contributed to a decrease in coefficient of friction (COF) in all of the samples.

 

/

返回文章
返回