Cite this article as:

Qian Zhu, Hua-lei Zhou, Ying-xiao Song, Zhi-dong Chang, and Wen-jun Li, Modification and investigation of silica particles as a foam stabilizer, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp.208-215. https://dx.doi.org/10.1007/s12613-017-1397-2
Qian Zhu, Hua-lei Zhou, Ying-xiao Song, Zhi-dong Chang, and Wen-jun Li, Modification and investigation of silica particles as a foam stabilizer, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp.208-215. https://dx.doi.org/10.1007/s12613-017-1397-2
引用本文 PDF XML SpringerLink

Modification and investigation of silica particles as a foam stabilizer

摘要: As a solid foam stabilizer, spherical silica particles with diameters ranging from 150 to 190 nm were prepared via an improved Stöber method and were subsequently modified using three different silane coupling agents to attain the optimum surface hydrophobicity of the particles. Fourier transform infrared (FTIR) spectra and the measured contact angles were used to characterize the surface properties of the prepared particles. The foam stability was investigated by the foam drainage half-life and the expansion viscoelastic modulus of the liquid film. The results demonstrate that all of the modified silica nanoparticles effectively improve the foam stability. The surface hydrophobicity of the modified particles is found to be a key factor influencing the foam stability. The optimum contact angle of the particles lies in the approximate range from 50° to 55°. The modifier molecular structure used can also influence the stabilizing foam property of the solid particles. The foam system stabilized by (CH3)2SiCl2-modified silica particles exhibits the highest stability; its drainage half-life at maximum increases by 27% compared to that of the blank foam system and is substantially greater than those of the foam systems stabilized by KH570- and KH550-modified particles.

 

Modification and investigation of silica particles as a foam stabilizer

Abstract: As a solid foam stabilizer, spherical silica particles with diameters ranging from 150 to 190 nm were prepared via an improved Stöber method and were subsequently modified using three different silane coupling agents to attain the optimum surface hydrophobicity of the particles. Fourier transform infrared (FTIR) spectra and the measured contact angles were used to characterize the surface properties of the prepared particles. The foam stability was investigated by the foam drainage half-life and the expansion viscoelastic modulus of the liquid film. The results demonstrate that all of the modified silica nanoparticles effectively improve the foam stability. The surface hydrophobicity of the modified particles is found to be a key factor influencing the foam stability. The optimum contact angle of the particles lies in the approximate range from 50° to 55°. The modifier molecular structure used can also influence the stabilizing foam property of the solid particles. The foam system stabilized by (CH3)2SiCl2-modified silica particles exhibits the highest stability; its drainage half-life at maximum increases by 27% compared to that of the blank foam system and is substantially greater than those of the foam systems stabilized by KH570- and KH550-modified particles.

 

/

返回文章
返回