Cite this article as:

Shu-lun Gao, Mei Yu, Jian-hua Liu, Bing Xue, and Song-mei Li, Effects of cupric ions on the corrosion behavior of aluminum alloy 5A02 in ethylene glycol-water solution, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp.423-431. https://dx.doi.org/10.1007/s12613-017-1423-4
Shu-lun Gao, Mei Yu, Jian-hua Liu, Bing Xue, and Song-mei Li, Effects of cupric ions on the corrosion behavior of aluminum alloy 5A02 in ethylene glycol-water solution, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp.423-431. https://dx.doi.org/10.1007/s12613-017-1423-4
引用本文 PDF XML SpringerLink

Effects of cupric ions on the corrosion behavior of aluminum alloy 5A02 in ethylene glycol-water solution

摘要: The effects of cupric ions on the corrosion behavior of aluminum alloy 5A02 in ethylene glycol-water solutions were studied by potentiodynamic polarization, electrochemical noise (EN), and complementary techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). A positive corrosion potential and increased corrosion current were observed due to the deposition of copper. The results demonstrate that the main corrosion type was pitting and the increasing cupric ion concentration augmented the pitting density. The pits became larger and deeper as a result of the embedment of copper into the surface of the alloy. Cupric ions were preferentially deposited at the defects around the secondary phase, leading to the formation of Al-Cu microgalvanic couples, which increased the corrosion rate. The corrosion rate gradually reached a stable value as the concentration of cupric ions was increased beyond 10 mmol/L.

 

Effects of cupric ions on the corrosion behavior of aluminum alloy 5A02 in ethylene glycol-water solution

Abstract: The effects of cupric ions on the corrosion behavior of aluminum alloy 5A02 in ethylene glycol-water solutions were studied by potentiodynamic polarization, electrochemical noise (EN), and complementary techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). A positive corrosion potential and increased corrosion current were observed due to the deposition of copper. The results demonstrate that the main corrosion type was pitting and the increasing cupric ion concentration augmented the pitting density. The pits became larger and deeper as a result of the embedment of copper into the surface of the alloy. Cupric ions were preferentially deposited at the defects around the secondary phase, leading to the formation of Al-Cu microgalvanic couples, which increased the corrosion rate. The corrosion rate gradually reached a stable value as the concentration of cupric ions was increased beyond 10 mmol/L.

 

/

返回文章
返回