Cite this article as: |
Zhi-hao Yao, Shao-cong Wu, Jian-xin Dong, Qiu-ying Yu, Mai-cang Zhang, and Guang-wei Han, Constitutive behavior and processing maps of low-expansion GH909 superalloy, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 432-443. https://doi.org/10.1007/s12613-017-1424-3 |
Zhi-hao Yao E-mail: zhihaoyao@ustb.edu.cn
[1] |
T. Liu, F. Yan, S. Liu, R. Y. Li, C. M. Wang, and X. Y. Hu, Microstructure and mechanical properties of laser-arc hybrid welding joint of GH909 alloy, Opt. Laser Technol., 80(2016), p. 56.
|
[2] |
O. Covarrubias, O. Elizarraras, and R. Colas, Effect of heat treatment on mechanical properties of alloy 909, Mater. Sci. Technol., 27(2011), No. 6, p. 1092.
|
[3] |
M. Balachander, K. R. Vishwakarma, and N. L. Richards, Over-aged metallography of alloy 909 a low coefficient of expansion superalloy, Mater. Sci. Technol., 28(2012), No. 3, p. 380.
|
[4] |
F. Yan, R. Y. Li, J. M. Li, Y. J. Wang, C. M. Wang, and X. Y. Hu, The effect of aging heat treatment on microstructure and mechanical properties of laser welded joints of alloy GH909, Mater. Sci. Eng. A, 598(2014), p. 62.
|
[5] |
X. Guo, K. Kusabiraki, and S. Saji, Intragranular precipitates in Incoloy alloy 909, Scripta Mater., 44(2001), No. 1, p. 55.
|
[6] |
L. Z. Ma and K. M. Chang, Effects of different metallurgical processing on microstructures and mechanical properties of Inconel alloy 783, J. Mater. Eng. Perform., 13(2004), No. 1, p. 32.
|
[7] |
X. C. Wang, Effect of forging process and heat treatment process on structure and properties of GH2909 alloy, Spec. Steel Technol., 19(2013), No. 2, p. 8.
|
[8] |
Y. K. Gao, Y. X. Zhao, and Y. F. Yin, Study of recrystallization of low expansion superalloy GH909, Heat Treat. Met., 30(2005), No. 1, p. 77.
|
[9] |
K. E. Tello, A. P. Gerlich, and P. F. Mendez, Constants for hot deformation constitutive models for recent experimental data, Sci. Technol. Weld. Joining, 15(2010), No. 3, p. 260.
|
[10] |
Z. L. Zhao, H. Z. Guo, X. C. Wang, and Z. K. Yao, Deformation behavior of isothermally forged Ti-5Al-2Sn-2Zr-4Mo-4Cr powder compact, J. Mater. Process. Technol., 209(2009), p. 5509.
|
[11] |
Y. Han, G. W. Liu, D. N. Zou, R. Liu, and G. J. Qiao, Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression, Mater. Sci. Eng. A, 565(2013), p. 342.
|
[12] |
Y. J. Wang, G. Fang, J. H. Zhang, P. Zeng, X. G. Zhang, and G. Shi, Finite element simulation for the spinning process of an automobile spokes with varying thickness, Mater. Sci. Technol., 20(2012), No. 3, p. 103.
|
[13] |
Z. Y. Ding, S. G. Jia, P. F. Zhao, M. Deng, and K. X. Song, Hot deformation behavior of Cu-0.6Cr-0.03Zr alloy during compression at elevated temperatures, Mater. Sci. Eng. A, 570(2013), p. 87.
|
[14] |
E. S. Puchi-Cabrera, M. H. Staia, J. D. Guérin, J. Lesage, M. Dubar, and D. Chicot, Analysis of the work-hardening behavior of C-Mn steels deformed under hot-working conditions, Int. J. Plast., 51(2013), p. 145.
|
[15] |
Y. D. Qu, M. M. Wang, L. M. Lei, X. Huang, L. Q. Wang, J. N. Qin, W. J. Lu, and D. Zhang, Behavior and modeling of high temperature deformation of an α+β titanium alloy, Mater. Sci. Eng. A, 555(2012), p. 99.
|
[16] |
G. A. He, F. Liu, J. Y. Si, C. Yang, and L. Jiang, Characterization of hot compression behavior of a new HIPed nickel-based P/M superalloy using processing maps, Mater. Des., 87(2015), p. 256.
|
[17] |
Z. X. Shi, X. F. Yan, and C. H. Duan, Characterization of hot deformation behavior of GH925 superalloy using constitutive equation, processing map and microstructure observation, J. Alloys Compd., 652(2015), p. 30.
|
[18] |
C. Y. Sun, G. Liu, Q. D. Zhang, R. Li, and L. L. Wang, Determination of hot deformation behavior and processing maps of IN 028 alloy using isothermal hot compression test, Mater. Sci. Eng. A, 595(2014), p. 92.
|
[19] |
S. Wang, L. G. Hou, J. R. Luo, J. S. Zhang, and L. Z. Zhuang, Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map, J. Mater. Process. Technol., 225(2015), p. 110.
|
[20] |
Q. Y. Yu, Z. H. Yao, and J. X. Dong, Hot deformation behavior of uniform fine-grained GH4720Li alloy based on its processing map, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 83.
|
[21] |
R. Baktash and H. Mirzadeh, A simple constitutive model for prediction of single-peak flow curves under hot working conditions, J. Eng. Mater. Technol., 138(2016), No. 2, p. 41.
|
[22] |
S. L. Guo, D. F. Li, X. P. Wu, X. Q. Xu, P. Du, and J. Hu, Characterization of hot deformation behavior of a Zn-10.2Al-2.1Cu alloy using processing maps, Mater. Des., 41(2012), p. 158.
|
[23] |
L. Zhang, Z. Li, Q. Lei, W. T. Qiu, and H. T. Luo, Hot deformation behavior of Cu-8.0Ni-1.8Si-0.15Mg alloy, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1641.
|
[24] |
C. Poletti, H. Dieringa, and F. Warchomicka, Local deformation and processing maps of as-cast AZ31 alloy, Mater. Sci. Eng. A, 516(2009), No. 1-2, p. 138.
|
[25] |
W. Y. Kim, S. Hanada, and T. Takasugi, Flow behavior and microstructure of Co3Ti intermetallic alloy during superplastic deformation, Acta Mater., 46(1998), No. 10, p. 3593.
|
[26] |
S. Spigarelli, M. E. Mehtedi, M. Cabibbo, F. Gabrielli, and D. Ciccarelli, High temperature processing of brass constitutive analysis of hot working of Cu-Zn alloys, Mater. Sci. Eng. A, 615(2014), p. 331.
|
[27] |
X. S. Xia, Q. Chen, K. Zhang, Z. D. Zhao, M. L. Ma, X. G. Li, and Y. J. Li, Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy, Mater. Sci. Eng. A, 587(2013), p. 283.
|
[28] |
H. J. McQueen and N. D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A, 322(2002), No. 1-2, p. 43.
|
[29] |
Y. C. Zhu, W. D. Zeng, F. Feng, Y. Sun, Y. F. Han, and Y. G. Zhou, Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1757.
|
[30] |
A. Mohamadizadeh, A. Zarei-Hanzaki, and H. R. Abedi, Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters, Mech. Mater., 95(2016), p. 60.
|
[31] |
H. L. Wei, G. Q. Liu, X. Xiao, and M. H. Zhang, Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel, Mater. Sci. Eng. A, 573(2013), p. 215.
|
[32] |
D. X. Wen, Y. C. Lin, H. B. Li, X. M. Chen, J. D. Dong, and L. T. Li, Hot deformation behavior and processing map of a typical Ni-based superalloy, Mater. Sci. Eng. A, 591(2014), p. 183.
|
[33] |
Y. H. Liu, Y. Q. Ning, Z. K. Yao, and H. Z. Guo, Hot deformation behavior of Ti-6.0Al-7.0Nb biomedical alloy by using processing map, J. Alloys Compd., 587(2014), p. 183.
|
[34] |
Y. C. Lin, L. T. Li, Y. C. Xia, and Y. Q Jiang, Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy, J. Alloys Compd., 550(2013), p. 438.
|
[35] |
Y. Sun, W. D. Zeng, Y. Q. Zhao, X. M. Zhang, Y. Shu, and Y. G. Zhou, Research on the hot deformation behavior of Ti40 alloy using processing map, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1205.
|
[36] |
J. Luo, M. Q. Li, H. Li, and W. X. Yu, Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy, Mater. Sci. Eng. A, 505(2009), No. 1-2, p. 88.
|
[37] |
D. Samantaray, S. Mandal, and A. K. Bhaduri, Characterization of deformation instability in modified 9Cr-1Mo steel during thermo-mechanical processing, Mater. Des., 32(2011), No. 2, p. 716.
|
[38] |
A. DiSchino, J. M. Kenny, M. G. Mecozzi, and M. Barteri, Development of high nitrogen, low nickel, 18% Cr austenitic stainless steels, J. Mater. Sci., 35(2000), p. 4803.
|
[39] |
H. Dehghan, S. M Abbasi, A. Momeni, and A. K. Taheri, On the constitutive modeling and microstructural evolution of hot compressed A286 iron-base superalloy, J. Alloys Compd., 564(2013), p. 13.
|
[40] |
S. F. Medina and C. A. Hernandez, General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta Mater., 44(1996), p. 137.
|
[41] |
L. X. Wang, G. Fang, M. A. Leeflang, J. Duszczyk, and J. Zhou, Constitutive behavior and microstructure evolution of the as-extruded AE21 magnesium alloy during hot compression testing, J. Alloys Compd., 622(2015), p. 121.
|
[42] |
J. Xiao, D. S. Li, X. Q. Li, and T. S. Deng, Constitutive modeling and microstructure change of Ti-6Al-4V during the hot tensile deformation, J. Alloys Compd., 541(2012), p. 346.
|
[43] |
H. P. Li, L. F. He, G. Q. Zhao, and L. Zhang, Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson Cook model, Mater. Sci. Eng. A, 580(2013), p. 330.
|
[44] |
Y. Q. Ning, Z. Yao, X. M. Liang, and Y. H. Liu, Flow behavior and constitutive model for Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al superalloy compressed below γ'transus temperature, Mater. Sci. Eng. A, 551(2012), p. 7.
|
[45] |
X. S. Xia, Q. Chen, S. H. Huang, J. Lin, C. K. Hu, and Z. D. Zhao, Hot deformation behavior of extruded Mg-Zn-Y-Zr, J. Alloys Compd., 644(2015), p. 308.
|