留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 4
Apr.  2017
数据统计

分享

计量
  • 文章访问数:  655
  • HTML全文浏览量:  124
  • PDF下载量:  13
  • 被引次数: 0
Li-ping Wang, Fu Zhang, Shuai Chen,  and Zi-heng Bai, One-pot synthesis and optical properties of In-and Sn-doped ZnO nanoparticles, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 455-461. https://doi.org/10.1007/s12613-017-1426-1
Cite this article as:
Li-ping Wang, Fu Zhang, Shuai Chen,  and Zi-heng Bai, One-pot synthesis and optical properties of In-and Sn-doped ZnO nanoparticles, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 455-461. https://doi.org/10.1007/s12613-017-1426-1
引用本文 PDF XML SpringerLink
研究论文

One-pot synthesis and optical properties of In-and Sn-doped ZnO nanoparticles

  • 通讯作者:

    Li-ping Wang    E-mail: lpwang@mater.ustb.edu.cn

  • Colloidal indium-doped zinc oxide (IZO) and tin-doped zinc oxide (ZTO) nanoparticles were successfully prepared in organic solution,with metal acetylacetonate as the precursor and oleylamine as the solvent.The crystal and optical properties were characterized by X-ray diffraction,UV-visible spectrophotometry,and fluorescence spectroscopy,respectively;the surface and structure morphologies were observed by scanning electron microscopy and transmission electron microscopy.The XRD patterns of the IZO and ZTO nanoparticles all exhibited similar diffraction peaks consistent with the standard XRD pattern of ZnO,although the diffraction peaks of the IZO and ZTO nanoparticles were slightly shifted with increasing dopant concentration.With increasing dopant concentration,the fluorescent emission peaks of the IZO nanoparticles exhibited an obvious red shift because of the difference in atomic radii of indium and zinc,whereas those of the ZTO nanoparticles exhibited almost no shift because of the similarity in atomic radii of tin and zinc.Furthermore,the sizes of the IZO and ZTO nanoparticles distributed in the ranges 20-40 and 20-25 nm,respectively,which is attributed to the difference in ionic radii of indium and tin.
  • Research Article

    One-pot synthesis and optical properties of In-and Sn-doped ZnO nanoparticles

    + Author Affiliations
    • Colloidal indium-doped zinc oxide (IZO) and tin-doped zinc oxide (ZTO) nanoparticles were successfully prepared in organic solution,with metal acetylacetonate as the precursor and oleylamine as the solvent.The crystal and optical properties were characterized by X-ray diffraction,UV-visible spectrophotometry,and fluorescence spectroscopy,respectively;the surface and structure morphologies were observed by scanning electron microscopy and transmission electron microscopy.The XRD patterns of the IZO and ZTO nanoparticles all exhibited similar diffraction peaks consistent with the standard XRD pattern of ZnO,although the diffraction peaks of the IZO and ZTO nanoparticles were slightly shifted with increasing dopant concentration.With increasing dopant concentration,the fluorescent emission peaks of the IZO nanoparticles exhibited an obvious red shift because of the difference in atomic radii of indium and zinc,whereas those of the ZTO nanoparticles exhibited almost no shift because of the similarity in atomic radii of tin and zinc.Furthermore,the sizes of the IZO and ZTO nanoparticles distributed in the ranges 20-40 and 20-25 nm,respectively,which is attributed to the difference in ionic radii of indium and tin.
    • loading
    • [1]
      E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York, 1982, 15.
      [2]
      S. G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, R. Uecker, P. Reiche, J. L. Freeouf, and G. Lucovsky, Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry, J. Appl. Phys., 91(2002), No. 7, p. 4500.
      [3]
      E. Monroy, F. Omnès, and F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol., 18(2003), No. 4, p. R33.
      [4]
      O. N. Mryasov and A. J. Freeman, Electronic band structure of indium tin oxide and criteria for transparent conducting behavior, Phys. Rev. B, 64(2001), No. 23, article No. 233111.
      [5]
      R. J. Stirn and Y. C. M. Yeh, Technology of GaAs metal-oxide-semiconductor solar cells, IEEE Trans. Electron Devices, 24(1977), No. 4, p. 476.
      [6]
      K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arkawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Sol. Energy Mater. Sol. Cells, 64(2000), No. 2, p. 115.
      [7]
      M. Kulakci, U. Serincan, and R. Turan, Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation, Semicond. Sci. Technol., 21(2006), No. 12, p. 1527.
      [8]
      K. Natori, Ballistic metal-oxide-semiconductor field effect transistor, J. Appl. Phys., 76(1994), No. 8, p. 4879.
      [9]
      H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer, Appl. Phys. Lett., 86(2005), No. 1, article No. 013503.
      [10]
      Y. L. Zhao, G. F. Dong, L. Duan, J. Qiao, D. Q. Zhang, L. D. Wang, and Y. Qiu, Impacts of Sn precursors on solution-processed amorphous zinc-tin oxide films and their transistors, RSC Adv., 2(2012), No. 12, p. 5307.
      [11]
      J. Socratous, K. K. Banger, Y. Vaynzof, A. Sandhanala, A. D. Brown, A. Sepe, U. Steiner, and H. Sirringhaus, Electronic structure of low-temperature solution-processed amorphous metal oxide semiconductors for thin-film transistor applications, Adv. Funct. Mater., 25(2015), No. 12, p. 1873.
      [12]
      K. Domen, T. Miyase, K. Abe, H. Hosono, and T. Kamiya, Positive gate bias instability induced by diffusion of neutral hydrogen in amorphous In-Ga-Zn-O thin-film transistor, IEEE Electron Device Lett., 35(2014), No. 8, p. 832.
      [13]
      A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor, Nature, 427(2004), No. 6975, p. 615.
      [14]
      C. T. Black, K. W. Guarini, Y. Zhang, H. Kim, J. Benedict, E. Sikorski, I. V. Babich, and K. R. Milkove, High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitors, IEEE Electron Device Lett., 25(2004), No. 9, p. 622.
      [15]
      S. Choi, B. C. Johnson, S. Castelletto, C. Ton-That, M. R. Phillips, and I. Aharonovich, Single photon emission from ZnO nanoparticles, Appl. Phys. Lett., 104(2014), No. 26, article No. 261101.
      [16]
      F. Lu, W. P. Cai, and Y. G. Zhang, ZnO hierarchical micro/nanoarchitectures:solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct. Mater., 18(2008), No. 7, p. 1047.
      [17]
      T. G. Xu, L. W. Zhang, H. Y. Cheng, and Y. F. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal. B, 101(2011), No. 3-4, p. 382.
      [18]
      R. Deng, Y. F. Li, B. Yao, J. M. Qin, D. Y. Jiang, X. Fang, F. Fang, Z. P. Wei, and L. L. Gao, Shallow donor ionization energy in Sn-doped ZnO nanobelts, Nanosci. Nanotechnol. Lett., 6(2014), No. 10, p. 887.
      [19]
      S. M. Rozati, F. Zarenejad, and N. Memarian, Study on physical properties of indium-doped zinc oxide deposited by spray pyrolysis technique, Thin Solid Films, 520(2011), No. 4, p. 1259.
      [20]
      X. L. Fu, X. X. Wang, J. L. Long, Z. X. Ding, T. J. Yan, G. Y. Zhang, Z. Z. Zhang, H. X. Lin, and X. Z. Fu, Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4, J. Solid State Chem., 182(2009), No. 3, p. 517.
      [21]
      J. B. Shi, P. F. Wu, Y. T. Lin, C. T. Kao, C. J. Chen, F. C. Cheng, H. H. Liu, Y. C. Chen, H. S. Lin, and H. W. Lee, Synthesis and optical properties of single-crystalline indium zinc oxide (IZO) nanowires via co-deposition and oxidation methods, Vacuum, 115(2015), No. 2, p. 61.
      [22]
      S. I. Choi, K. M. Nam, B. K. Park, W. S. Seo, and J. T. Park, Preparation and optical properties of colloidal, monodisperse, and highly crystalline ITO nanoparticles, Chem. Mater., 20(2008), No. 8, p. 2609.
      [23]
      J. F. Liu, Y. Y. Bei, H. P. Wu, D. Shen, J. Z. Gong, X. G. Li, Y. W. Wang, N. P. Jiang, and J. Z. Jiang, Synthesis of relatively monodisperse ZnO nanocrystals from a precursor zinc 2, 4-pentanedionate, Mater. Lett., 61(2007), No. 13, p. 2837.
      [24]
      J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater., 4(2005), No. 2, p. 173.
      [25]
      T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, and H. Koinuma, Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO, Appl. Phys. Lett., 82(2003), No. 4, p. 532.
      [26]
      D. W. Chu, Y. P. Zeng, and D. L. Jiang, Hydrothermal synthesis and optical properties of Pb2+ doped ZnO nanorods, Mater. Lett., 60(2006), No. 21-22, p. 2783.
      [27]
      U. Holzwarth and N. Gibson, The Scherrer equation versus the"Debye-Scherrer equation", Nat. Nanotechnol., 6(2011), No. 9, p. 534.

    Catalog


    • /

      返回文章
      返回