留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 4
Apr.  2017
数据统计

分享

计量
  • 文章访问数:  509
  • HTML全文浏览量:  83
  • PDF下载量:  19
  • 被引次数: 0
Mohammad Baghani, Mahmood Aliofkhazraei,  and Mehdi Askari, Cu-Zn-Al2O3 nanocomposites:study of microstructure,corrosion,and wear properties, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 462-472. https://doi.org/10.1007/s12613-017-1427-0
Cite this article as:
Mohammad Baghani, Mahmood Aliofkhazraei,  and Mehdi Askari, Cu-Zn-Al2O3 nanocomposites:study of microstructure,corrosion,and wear properties, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 462-472. https://doi.org/10.1007/s12613-017-1427-0
引用本文 PDF XML SpringerLink
研究论文

Cu-Zn-Al2O3 nanocomposites:study of microstructure,corrosion,and wear properties

  • Alumina nanoparticles were added to a Cu-Zn alloy to investigate their effect on the microstructural, tribological, and corrosion properties of the prepared alloys. Alloying was performed using a mixture of copper and zinc powders with 0vol% and 5vol% of α-Al nanopowder in a satellite ball mill. The results showed that the Cu-Zn solid solution formed after 18 h of mechanical alloying. The mechanically alloyed powder was compacted followed by sintering of the obtained green compacts at 750℃ for 30 min. Alumina nanoparticles were uniformly distributed in the matrix of the Cu-Zn alloy. The tribological properties were evaluated by pin-on-disk wear tests, which revealed that, upon the addition of alumina nanoparticles, the coefficient of friction and the wear rate were reduced to 20% and 40%, respectively. The corrosion properties of the samples exposed to a 3.5wt% NaCl solution were studied using the immersion and potentiodynamic polarization methods, which revealed that the addition of alumina nanoparticles reduced the corrosion current of the nanocomposite by 90%.
  • Research Article

    Cu-Zn-Al2O3 nanocomposites:study of microstructure,corrosion,and wear properties

    + Author Affiliations
    • Alumina nanoparticles were added to a Cu-Zn alloy to investigate their effect on the microstructural, tribological, and corrosion properties of the prepared alloys. Alloying was performed using a mixture of copper and zinc powders with 0vol% and 5vol% of α-Al nanopowder in a satellite ball mill. The results showed that the Cu-Zn solid solution formed after 18 h of mechanical alloying. The mechanically alloyed powder was compacted followed by sintering of the obtained green compacts at 750℃ for 30 min. Alumina nanoparticles were uniformly distributed in the matrix of the Cu-Zn alloy. The tribological properties were evaluated by pin-on-disk wear tests, which revealed that, upon the addition of alumina nanoparticles, the coefficient of friction and the wear rate were reduced to 20% and 40%, respectively. The corrosion properties of the samples exposed to a 3.5wt% NaCl solution were studied using the immersion and potentiodynamic polarization methods, which revealed that the addition of alumina nanoparticles reduced the corrosion current of the nanocomposite by 90%.
    • loading
    • [1]
      P. Webster, The Brasses:Properties & Applications, Copper Development Association, Hertfordshire, 2005.
      [2]
      J. R. Davis, Copper and Copper Alloys, ASM International, Materials Park, Ohio, 2001.
      [3]
      S. K. Pabi and B. S. Murty, Mechanism of mechanical alloying in Ni Al and Cu Zn systems, Mater. Sci. Eng. A, 214(1996), No. 1-2, p. 146.
      [4]
      S. D. Beattie and J. R. Dahn, Comparison of electrodeposited copper-zinc alloys prepared individually and combinatorially, J. Electrochem. Soc., 150(2003), No. 11, p. C802.
      [5]
      Y. Guan and X. Peng, A novel electrodeposited Cu-Zn-Bi film with increased corrosion resistance in a 0.05 MK2SO4 solution, Appl. Surf. Sci., 258(2011), No. 2, p. 822.
      [6]
      M. R. H. D. Almeida, E. P. Barbano, M. F. D. Carvalho, P. C. Tulio, and I. A. Carlos, Copper-zinc electrodeposition in alkaline-sorbitol medium:electrochemical studies and structural, morphological and chemical composition characterization, Appl. Surf. Sci., 333(2015), p. 13.
      [7]
      D. Y. Ying and D. L. Zhang, Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A, 286(2000), No. 1, p. 152.
      [8]
      K. S. Zuo, S. Q. Xi, and J. E. Zhou, Effect of temperature on mechanical alloying of Cu-Zn and Cu-Cr system, Trans. Nonferrous Met. Soc. China, 19(2009), No. 5, p. 1206.
      [9]
      T. Yamane, H. Okubo, N. Oki, K. Hisayuki, M. Kiritani, and M. Komatsu, Consolidation of mechanically alloyed powder mixture of Cu-Zn alloy and graphite, Mater. Sci. Eng. A, 350(2003), No. 1-2, p. 173.
      [10]
      F. Cardellini, V. Contini, G. Mazzone, and M. Vittori, Phase Transformations and chemical reactions in mechanically alloyed Cu-Zn powders, Scripta Metall. Mater., 28(1993), No. 9, p. 1035.
      [11]
      V. Rajkovic, D. Bozic, and M. T. Jovanovic, Effects of copper and Al2O3 particles on characteristics of Cu-Al2O3 composites, Mater. Des., 31(2010), No. 4, p. 1962.
      [12]
      M. F. Zawrah, H. A. Zayed, R. A. Essawy, A. H. Nassar, and M. A. Taha, Preparation by mechanical alloying, characterization and sintering of Cu-20wt.% Al2O3 nanocomposites, Mater. Des., 46(2013), p. 485.
      [13]
      L. H. Hihara and R. M. Latanision, Corrosion of metal matrix composites, Int. Mater. Rev., 39(1994), No. 6, p. 245.
      [14]
      B. D. Cullity, Elements of X-ray Diffraction, 2nd Ed., Addison-Wesley Publishing Company, USA, 1978.
      [15]
      J. B. Fogagnolo, F. Velasco, M. H. Robert, and J. M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders, Mater. Sci. Eng. A, 342(2003), No. 1-2, p. 131.
      [16]
      H. P. Klung and L. E. Alexander, X-ray Diffraction Procedures, Wiley, New York, 1962.
      [17]
      C. Suryanarayana and M. G. Norton, X-ray Diffraction:A Practical Approach, Springer Science&Business Media, New York, 2013.
      [18]
      J. Eckert, J. C. Holzer, C. E. Krill, and W. L. Johnson, Reversible grain size changes in ball-milled nanocrystalline Fe-Cu alloys, J. Mater. Res., 7(1992), No. 8, p. 1980.
      [19]
      C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), p. 1.
      [20]
      N. K. Mukhopadhyay, D. Mukherjee, S. Bera, I. Manna, and R. Manna, Synthesis and characterization of nano-structured Cu-Zn γ-brass alloy, Mater. Sci. Eng. A, 485(2008), No. 1-2, p. 673.
      [21]
      L. Lü and M. O. Lai, Mechanical Alloying, Springer Science & Business Media, New York, 2013.
      [22]
      H. Imai, K. Kondoh, Y. Kosaka, S. Li, J. Umeda, H. Atsumi, and A. Kojima, Characteristics of lead-free P/M Cu60-Zn40 brass alloys with graphite, Powder Technol., 198(2010), No. 3, p. 417.
      [23]
      S. Domsa, Sintered brass from mechanical Cu-Zn powder mixtures, J. Phys. IV, 3(1993), No. C7, p. 735.
      [24]
      R. M. German, Sintering Theory and Practice, Wiley-VCH, 1996, p. 568.
      [25]
      R. M. German, Powder Metallurgy and Particulate Materials Processing:the Processes, Materials, Products, Properties, and Applications, Metal Powder Industries Federation Princeton, NJ, 2005.
      [26]
      P. J. F. Harris, Growth and structure of supported metal catalyst particles, Int. Mater. Rev., 40(1995), No. 3, p. 97.
      [27]
      M. Korać1, Z. Anđić, M. Tasić, andŽ. Kamberović, Sintering of Cu-Al2O3 nano-composite powders produced by a thermochemical route, J. Serb. Chem. Soc., 72(2007), No. 11, p. 1115.
      [28]
      F. Shehata, M. Abdelhameed, A. Fathy, and M. Elmahdy, Preparation and characteristics of Cu-Al2O3 nanocomposite, Open J. Met., 1(2011), p. 25.
      [29]
      R. Ritasalo, X. W. Liua, O. Söderberg, A. Keski-Honkola, V. Pitkänen, and S. P. Hannula, The microstructural effects on the mechanical and thermal properties of pulsed electric current sintered Cu-Al2O3 composites, Procedia Eng., 10(2011), p. 124.
      [30]
      P. L. Mangonon, The Principles of Materials Selection for Engineering Design, Prentice Hall, London, 1999.
      [31]
      V. Rajković, D. Božić, A. Devečerski, S. Bojanić, and M. T. Jovanović, Strength and thermal stability of Cu-Al2O3 composite obtained by internal oxidation, Rev. Metal., 46(2010), No. 6, p. 520.
      [32]
      V. Rajković, D. Božić, M. Popović, and M. T. Jovanović, The influence of powder particle size on properties of Cu-Al2O3 composites, Sci. Sintering, 41(2009), p. 185.
      [33]
      A. Mukhtar, D. L. Zhang, C. Kong, and P. Munroe, Effect of processing condition and composition on the microhardness of Cu-(2.5-10) vol.% Al2O3 nanocomposite powder particles produced by high energy mechanical milling, Int. J. Mod. Phys. B, 24(2010), No. 15, p. 2308.
      [34]
      K. Jach, K. Pietrzak, A. Wajler, A. Sidorowicz, and U. Brykała, Application of ceramic preforms to the manufacturing of ceramic-metal composites, Arch. Metall. Mater., 58(2013), No. 4, p. 1425.
      [35]
      A. Vencl, V. Rajkovic, and F. Zivic, Friction and wear properties of copper-based composites reinforced with micro-and nano-sized Al2O3 particles,[in] Proceedings of the 8th International Conference on Tribology-BALKANTRIB'14, Sinaia, Romania, 2014, p. 30.
      [36]
      G. H. Zhou, H. Y. Ding, Y. Zhang, H. David, and A. H. Liu, Fretting behavior of nano-Al2O3 reinforced copper-matrix composites prepared by coprecipitation, Metalurgija, 15(2009), No. 3, p. 169.
      [37]
      A. M. Soleimanpour, P. Abachi, and K. Purazrang, Wear behaviour of in situ Cu-Al2O3 composites produced by internal oxidation of as cast alloys, Tribol. Mater. Surf. Interfaces, 3(2009), No. 3, p. 125.
      [38]
      Y. S. Zhang, K. Wang, Z. Han, and G. Liu, Dry sliding wear behavior of copper with nano-scaled twins, Wear, 262(2007), No. 11-12, p. 1463.
      [39]
      A. Fathy, F. Shehata, M. Abdelhameed, and M. Elmahdy, Compressive and wear resistance of nanometric alumina reinforced copper matrix composites, Mater. Des., 36(2012), p. 100.
      [40]
      J. W. Kaczmar, K. Granat, E. Grodzka, and A. Kurzawa, Tribological properties of Cu based composite materials strengthened with Al2O3 particles, Arch. Foundry Eng., 12(2012), No. 2, p. 33.
      [41]
      F. Shehata, A. Fathy, M. Abdelhameed, and S. F. Moustafa, Fabrication of copper-alumina nanocomposites by mechano-chemical routes, J. Alloys Compd., 476(2009), No. 1-2, p. 300.
      [42]
      C. S. Ramesh, R. N. Ahmed, M. A. Mujeebu, and M. Z. Abdullah, Development and performance analysis of novel cast copper-SiC-Gr hybrid composites, Mater. Des., 30(2009), No. 6, p. 1957.
      [43]
      G. Yuan, J. C. Jie, P. C. Zhang, J. Zhang, T. M. Wang, and T. J. Li, Wear behavior of high strength and high conductivity Cu alloys under dry sliding, Trans. Nonferrous Met. Soc. China, 25(2015), No. 7, p. 2293.
      [44]
      S. Alirezaei, S. M. Monirvaghefi, M. Salehi, and A. Saatchi, Wear behavior of Ni-P and Ni-P-Al2O3 electroless coatings, Wear, 262(2007), No. 7-8, p. 978.
      [45]
      R. Ravichandran and N. Rajendran, Influence of benzotriazole derivatives on the dezincification of 65-35 brass in sodium chloride, Appl. Surf. Sci., 239(2005), No. 2, p. 182.
      [46]
      G. A. El-Mahdy, A. K. F. Dyab, A. M. Atta, and H. A. Al-Lohedan, Brass Corrosion under a single droplet of NaCl, Int. J. Electrochem. Sci., 8(2013), p. 9858.
      [47]
      M. M. Antonijevic, G. D. Bogdanovic, M. B. Radovanovic, M. B. Petrovic, and A. T. Stamenkovic, Influence of pH and chloride ions on electrochemical behavior of brass in alkaline solution, Int. J. Electrochem. Sci., 4(2009), p. 654.
      [48]
      G. A. El-Mahdy, Electrochemical impedance study on brass corrosion in NaCl and (NH4)2SO4 solutions during cyclic wet-dry conditions, J. Appl. Electrochem., 35(2005), No. 3, p. 347.
      [49]
      I. Milošev and T. Kosec, Electrochemical and spectroscopic study of benzotriazole films formed on copper, copper-zinc alloys and zinc in chloride solution, Chem. Biochem. Eng. Q, 23(2009), No. 1, p. 53.
      [50]
      Z. S. Smialowska, Pitting corrosion of metals, Corros. Sci., 41(1999), No. 9, p. 1743.
      [51]
      B. Szczygieł and M. Kołodziej, Composite Ni/Al2O3 coatings and their corrosion resistance, Electrochim. Acta, 50(2005), No. 20, p. 4188.
      [52]
      A. C. Ciubotariu, L. Benea, M. L. Varsanyi, and V. Dragan, Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3-Ni nano composite coatings, Electrochim. Acta, 53(2008), No. 13, p. 4557.
      [53]
      P. Berçot, E. Peña-Muñoz, and J. Pagetti, Electrolytic composite Ni-PTFE coatings:an adaptation of Guglielmi's model for the phenomena of incorporation, Surf. Coat. Technol., 157(2002), No. 2-3, p. 282.
      [54]
      H. Koivuluoto and P. Vuoristo, Effect of powder type and composition on structure and mechanical properties of Cu+Al2O3 coatings prepared by using low-pressure cold spray process, J. Therm. Spray Technol., 19(2010), No. 5, p. 1081.
      [55]
      T. Lampke, A. Leopold, D. Dietrich, G. Alisch, and B. Wielage, Correlation between structure and corrosion behaviour of nickel dispersion coatings containing ceramic particles of different sizes, Surf. Coat. Technol., 201(2006), No. 6, p. 3510.
      [56]
      A. S. M. A. Haseeb, H. H. Masjuki, L. J. Ann, and M. A. Fazal, Corrosion characteristics of copper and leaded bronze in palm biodiesel, Fuel Process. Technol., 91(2010), No. 3, p. 329.
      [57]
      M. A. Almomani, W. R. Tyfour, and M. H. Nemrat, Effect of silicon carbide addition on the corrosion behavior of powder metallurgy Cu-30Zn brass in a 3.5 wt% NaCl solution, J. Alloys Compd., 679(2016), p. 104.
      [58]
      K. K. Alaneme and M. O. Bodunrin, Corrosion behavior of alumina reinforced aluminium (6063) metal matrix composites, J. Miner. Mater. Charact. Eng., 10(2011), No. 12, p. 1153.
      [59]
      B. M. Praveen and T. V. Venkatesha, Electrodeposition and properties of Zn-nanosized TiO2 composite coatings, Appl. Surf. Sci., 254(2008), No. 8, p. 2418.

    Catalog


    • /

      返回文章
      返回