Cite this article as:

Saman Beikzadeh Noei, Saeed Sheibani, Fereshteh Rashchi, and Seyed Mohammad Javad Mirazimi, Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex, Int. J. Miner. Metall. Mater., 24(2017), No. 6, pp.611-620. https://dx.doi.org/10.1007/s12613-017-1443-0
Saman Beikzadeh Noei, Saeed Sheibani, Fereshteh Rashchi, and Seyed Mohammad Javad Mirazimi, Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex, Int. J. Miner. Metall. Mater., 24(2017), No. 6, pp.611-620. https://dx.doi.org/10.1007/s12613-017-1443-0
引用本文 PDF XML SpringerLink

Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex

摘要: The copper recovery from low-grade copper sulfide ore was investigated using microbial leaching. Several parameters substantially affect the bioleaching of copper; among them, pulp density and nutrient media were selected for investigation. The optimum conditions for copper recovery were a pulp density of 5 g/mL, a mixed-mineral salt medium of Acidithiobacillus thiooxidans (70vol%) and Acidithiobacillus ferrooxidans (30vol%), and 10vol% of inoculum. Under these conditions, the maximum bioleaching capacity of the medium for copper recovery was determined to be approximately 99%. The effect of pulp density on the kinetics of the bioleaching process was surveyed using both da Silva's method and constrained multilinear regression analysis. The kinetics of copper dissolution followed the shrinking core model, and the process was diffusion controlled at a pulp density of 5 g/mL. Nevertheless, at higher pulp densities, the process was controlled by chemical reaction.

 

Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex

Abstract: The copper recovery from low-grade copper sulfide ore was investigated using microbial leaching. Several parameters substantially affect the bioleaching of copper; among them, pulp density and nutrient media were selected for investigation. The optimum conditions for copper recovery were a pulp density of 5 g/mL, a mixed-mineral salt medium of Acidithiobacillus thiooxidans (70vol%) and Acidithiobacillus ferrooxidans (30vol%), and 10vol% of inoculum. Under these conditions, the maximum bioleaching capacity of the medium for copper recovery was determined to be approximately 99%. The effect of pulp density on the kinetics of the bioleaching process was surveyed using both da Silva's method and constrained multilinear regression analysis. The kinetics of copper dissolution followed the shrinking core model, and the process was diffusion controlled at a pulp density of 5 g/mL. Nevertheless, at higher pulp densities, the process was controlled by chemical reaction.

 

/

返回文章
返回