Cite this article as: |
Bing-wei Luo, Jie Zhou, Peng-peng Bai, Shu-qi Zheng, Teng An, and Xiang-li Wen, Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2-H2O-CO2 system:products, reaction kinetics, and pitting sensitivity, Int. J. Miner. Metall. Mater., 24(2017), No. 6, pp. 646-656. https://doi.org/10.1007/s12613-017-1447-9 |
Shu-qi Zheng E-mail: zhengsq09@163.com,zhengsq@cup.edu.cn
[1] |
D.P. Li, L. Zhang, J.W. Yang, M.X. Lu, J.H. Ding, and M.L. Liu, Effect of H2S concentration on the corrosion behavior of pipeline steel under the coexistence of H2S and CO2, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 388.
|
[2] |
L.N. Xu, J.Y. Zhu, M.X. Lu, L. Zhang, and W. Chang, Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 500.
|
[3] |
Q.Y. Liu, L.J. Mao, and S.W. Zhou, Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments, Corros. Sci., 84(2014), p. 165.
|
[4] |
S. Dong, W. Liu, J. Zhang, X.Q. Lin, J. He, and M.X. Lu, Effect of oxygen on CO2 corrosion and erosion-corrosion behavior of N80 steel under high temperature and high pressure,[in] NACE International Corrosion Conference Series:Corrosion 2014, San Orlando, 2014, art. No. 4198.
|
[5] |
J. Zhang, X.Q. Lin, S.L. Lu, T.T. Wang, W. Liu, S. Dong, C. Yang, and M.X. Lu, Corrosion behavior and mechanism of N80 steel under high temperature and high pressure CO2-O2 coexisting condition,[in] NACE International Corrosion Conference Series:Corrosion 2013, Florida, 2013, art. No. 2479.
|
[6] |
X. Jiang, Y.G. Zheng, and W. Ke, Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution, Corros. Sci., 47(2005), No. 11, p. 2636.
|
[7] |
P.Y. Wang, J. Wang, S.Q. Zheng, Y.M. Qi, M.X. Xiong, and Y.J. Zheng, Effect of H2S/CO2 partial pressure ratio on the tensile properties of X80 pipeline steel, Int. J. Hydrogen Energy, 40(2015), No. 35, p. 11925.
|
[8] |
L. Wei, X.L. Pang, C. Liu, and K.W. Gao, Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment, Corros. Sci., 100(2015), p. 404.
|
[9] |
G. McIntire, J. Lippert, and J. Yudelson, The effect of dissolved CO2 and O2 on the corrosion of iron, Corrosion, 46(1990), No. 2, p. 91.
|
[10] |
D. John, B. Kinsella, S. Bailey, and R. De Marco, Flow dependence of carbon dioxide corrosion rates and the interference of trace dissolved oxygen,[in] NACE International Corrosion Conference Series:Corrosion 2007, Nashville, Tennessee, 2007, art. No. 07315.
|
[11] |
C.F. Chen, M.X. Lu, G.X. Zhao, Z.Q. Bai, and W. Chang, The ion passing selectivity of CO2 corrosion scale on N80 tube steel,[in] NACE International Corrosion Conference Series:Corrosion 2003, San Dieg, 2003, art. No. 03342.
|
[12] |
C.F. Chen, M.X. Lu, D.B. Sun, Z.H. Zhang, and W. Chang, Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system, Corrosion, 61(2005), No. 6, p. 594.
|
[13] |
F. Ayello, K. Evans, R. Thodla, and N. Sridhar, Effect of impurities on corrosion of steel in supercritical CO2,[in] NACE International Corrosion Conference Series:Corrosion 2010, San Antonio, 2010, art. No. 10193.
|
[14] |
Y. Hua, R. Barker, and A. Neville, The effect of O2 content on the corrosion behavior of X65 and 5Cr in water-containing supercritical CO2 environments, Appl. Surf. Sci., 356(2015), p. 499.
|
[15] |
W. Schulz, D. Huenert, H. Nitschke, R. Saliwan-Neumann, and A. Kranzmann, Comparison of the corrosion behavior of 9-12% Cr steels in H2O, H2O-CO2 and H2O-CO2-O2,[in] NACE International Corrosion Conference Series:Corrosion 2009, Atlanta, 2009, art. No. 09264.
|
[16] |
T. Hong and M. Nagumo, Effect of surface roughness on early stages of pitting corrosion of Type 301 stainless steel, Corros. Sci., 39(1997), No. 9, p. 1665.
|
[17] |
A. Shahryari, W. Kamal, and S. Omanovic, The effect of surface roughness on the efficiency of the cyclic potentiodynamic passivation (CPP) method in the improvement of general and pitting corrosion resistance of 316LVM stainless steel, Mater. Lett., 62(2008), No. 23, p. 3906.
|
[18] |
American Society for Testing and Materials, ASTM Standard G31, Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, 2004.
|
[19] |
International Standardization Organization, ISO 8407:Corrosion of Metals and Alloys-Removal of Corrosion Products from Corrosion Test Specimens, 2010.
|
[20] |
S.D. Zhu, G.S. Zhou, J. Miao, R. Cai, and J.F. Wei, Mechanical properties of CO2 corrosion scale formed at different temperatures and their relationship to corrosion rate, Corros. Eng. Sci. Technol., 47(2012), No. 3, p. 171.
|
[21] |
S.Q. Guo, L.N. Xu, L. Zhang, W. Chang, and M.X. Lu, Characterization of corrosion scale formed on 3Cr steel in CO2-saturated formation water, Corros. Sci., 110(2016), p. 123.
|
[22] |
X.G. Zheng and D.J. Young, High-temperature corrosion of Cr2O3-forming alloys in CO-CO2-N2 atmospheres, Oxid. Met., 42(1994), No. 3, p. 163.
|