Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite-spodumene ores

Berhe Goitom Gebreyohannes, Velázquez del Rosario Alberto, Abubeker Yimam, Girma Woldetinsae, Bogale Tadesse

分享

计量
  • 文章访问数:  649
  • HTML全文浏览量:  148
  • PDF下载量:  38
  • 被引次数: 12

目录

Cite this article as:

Berhe Goitom Gebreyohannes, Velázquez del Rosario Alberto, Abubeker Yimam, Girma Woldetinsae, and Bogale Tadesse, Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite-spodumene ores, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp.727-735. https://dx.doi.org/10.1007/s12613-017-1456-8
Berhe Goitom Gebreyohannes, Velázquez del Rosario Alberto, Abubeker Yimam, Girma Woldetinsae, and Bogale Tadesse, Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite-spodumene ores, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp.727-735. https://dx.doi.org/10.1007/s12613-017-1456-8
引用本文 PDF XML SpringerLink
研究论文

Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite-spodumene ores

    通信作者:

    Berhe Goitom Gebreyohannes E-mail: goitish2500@gmail.com

The beneficiation methods for Ethiopian Kenticha pegmatite-spodumene ores were assessed through mineralogical and quantitative analyses with X-ray diffraction (XRD) and energy-dispersive X-ray fluorescence (EDXRF). The tantalite in the upper zone of the Kenticha pegmatite-spodumene deposit is 58.7wt% higher than that in the inner zone. XRD analysis revealed that the upper zone is dominated by manganocolumbite, whereas the inner zone is predominantly tantalite-Mn. Repeated cleaning and beneficiation of the upper-zone ore resulted in concentrate compositions of 57.34wt% of Ta2O5 and 5.41wt% of Nb2O5. Washing the tantalite concentrates using 1vol% KOH and 1 M H2SO4 led to the removal of thorium and uranium radioactive oxides from the concentrate. The findings of this study suggest that the beneficiation and alkaline washing of Kenticha pegmatite-spodumene ores produce a high-grade export-quality tantalite concentrate with negligible radioactive oxides.

 

Research Article

Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite-spodumene ores

Author Affilications
  • Received: 25 October 2016; Revised: 09 December 2016; Accepted: 12 December 2016;
The beneficiation methods for Ethiopian Kenticha pegmatite-spodumene ores were assessed through mineralogical and quantitative analyses with X-ray diffraction (XRD) and energy-dispersive X-ray fluorescence (EDXRF). The tantalite in the upper zone of the Kenticha pegmatite-spodumene deposit is 58.7wt% higher than that in the inner zone. XRD analysis revealed that the upper zone is dominated by manganocolumbite, whereas the inner zone is predominantly tantalite-Mn. Repeated cleaning and beneficiation of the upper-zone ore resulted in concentrate compositions of 57.34wt% of Ta2O5 and 5.41wt% of Nb2O5. Washing the tantalite concentrates using 1vol% KOH and 1 M H2SO4 led to the removal of thorium and uranium radioactive oxides from the concentrate. The findings of this study suggest that the beneficiation and alkaline washing of Kenticha pegmatite-spodumene ores produce a high-grade export-quality tantalite concentrate with negligible radioactive oxides.

 

  • A.A. Baba, F.A. Adekola, O.I. Dele-Ige, and R.B. Bale, Investigation of dissolution kinetics of a Nigerian tantalite ore in nitric acid, J. Miner. Mater. Charact. Eng., 7(2007), No. 1, p. 83.

    S. Bernstein, D. Frei, R.K. McLimans, C. Knudsen, and V.N. Vasudev, Application of CCSEM to heavy mineral deposits, Source of high-Ti ilmenite sand deposits of South Kerala beaches, SW India, J. Geochem. Explor., 96(2008), No. 1, p. 25.

    F. Melcher, T. Graupner, H.E. Gäbler, M. Sitnikova, F. Henjes-Kunst, T. Oberthür, A. Gerdes, and S. Dewaele, Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites:Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology, Ore Geol. Rev., 64(2015), p. 667.

    M.O.H. Amuda, D.E. Esezobor, and G.I. Lawal, Adaptable technologies for life-cycle processing of tantalum bearing minerals, J. Miner. Mater. Charact. Eng., 6(2007), No. 1, p. 69.

    H.H. Htwe and K.T. Lwin, Study on extraction of niobium oxide from columbite-tantalite concentrate, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2(2008), No. 10, p. 223.

    E.V. Badanina, M.A. Sitnikova, V.V. Gordienko, F. Melcher, H.-E. Gäbler, J. Lodziak, and L.F. Syritso, Mineral chemistry of columbite-tantalite from spodumene pegmatites of Kolmozero, Kola Peninsula (Russia), Ore Geol. Rev., 64(2015), p. 720.

    M. Van Lichtervelde, Rare-element pegmatites-from natural systems to the experimental lab, Mitt. Österr. Miner. Ges., 160(2014), p. 13.

    H. Beurlen, A. Müller, D. Silva, and M.R.R. Da Silva, Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast Brazil, Mineral. Mag., 75(2011), No. 5, p. 2703.

    R.H. Mitchell, Primary and secondary niobium mineral deposits associated with carbonatites, Ore Geol. Rev., 64(2015), p. 626.

    F. Melcher, M.A. Sitnikova, T. Graupner, N. Martin, T. Oberthür, F. Henjes-Kunst, E. Gäbler, A. Gerdes, H. Brätz, D.W. Davis, and S. Dewaele, Fingerprinting of conflict minerals:columbite-tantalite ("coltan") ores, SGA News, 2008, No. 23, p. 7.

    A.L. Nikolaev, N.V. Kirichenko, and V.G. Maiorov, Niobium, tantalum, and titanium fluoride solutions, Russ. J. Inorg. Chem., 54(2009), No. 4, p. 505.

    A.R. Adetunji, W.O. Siyanbola, I.I. Funtua, S.O.O. Olusunle, A.A. Afonja, and O.O. Adewoye, Assessment of beneficiation routes of tantalite ores from key locations in Nigeria, J. Miner. Mater. Charact. Eng., 4(2005), No. 2, p. 85.

    D. Küster, R.L. Romer, D. Tolessa, D. Zerihun, K. Bheemalingeswara, F. Melcher, and T. Oberthür, The Kenticha rare-element pegamtite, Ethiopia:internal differntiation, U-Pb age and Ta mineralization, Miner. Deposita, 44(2009), p. 723.

    E.J. Kim, S.Y. Kim, D.H. Moon, and S.M. Koh, Fractionation and rare-element mineralization of kenticha pegmatite, Southern Ethiopia, Econ. Environ. Geol., 46(2013), No. 5, p. 375.

    P. Černý and T.S. Ercit, The classification of granitic pegmatites revisited, Can. Mineral., 43(2005), No. 6, p. 2005.

    M.S. Mohammedyasin, Geology, geochemistry and geochronology of the Kenticha rare metal granite pegmatite, Adola Belt, southern Ethiopia:a review, Int. J. Geosci., 8(2017), p. 46.

    S. Tadesse and D. Zerihun, Composition, fractionation trend and zoning accretion of the columbite-tantalite group of minerals in the Kenticha rare-metal field (Adola, southern Ethiopia), J. Afr. Earth Sci., 23(1996), No. 3, p. 411.

    R. Burt, Beneficiation of tantalum ore-how it is achieved and could it be better?[in] Proceedings of the 125th TMS Annual Meeting and Exhibition, Anaheim, CA, 1996, p. 17.

    M. Nete, W. Purcell, and J.T. Nel, Separation and isolation of tantalum and niobium from tantalite using solvent extraction and ion exchange, Hydrometallurgy, 149(2014), p. 31.

    T.A. Theron, Quantification of Tantalum in Series of Tantalum-Containing Compounds[Dissertation], University of the Free State, Bloemfontein, 2010, p. 88.

    O.M. El-Hussaini and M.A. Mahdy, Sulfuric acid leaching of Kab Amiri niobium-tantalum bearing minerals, Central Eastern Desert, Egypt, Hydrometallurgy, 64(2001), No. 3, p. 219.

    X.H. Wang, S.L. Zhang, H.B. Xu, and Y. Zhang, Dissolution behaviors of Ta2O5, Nb2O5 and their mixture in KOH and H2O system, Trans. Nonferrous Met. Soc. China, 20(2010), No. 10, p. 2006.

    O.M. EL-Husaini and M.N. EL-Hazek, Removal of radioactive elements from niobium and tantalum ores, Eur. J. Miner. Process. Environ. Prot., 5(2005), No. 1, p. 7.

    M. Nete, F. Koko, T. Theron, W. Purcell, and J.T. Nel, Primary beneficiation of tantalite using magnetic separation and acid leaching, Int. J. Miner. Metall. Mater., 21(2014), No. 12, p. 1153.

    O.M. El-Hussaini and M.A. Mahdy, Extraction of niobium and tantalum from nitrate and sulfate media by using MIBK, Miner. Process. Extr. Metall. Rev., 22(2010), p. 633.

    D.A.R. Mackay and G.J. Simandl, Niobium and tantalum:Geology, markets, and supply chains,[in] Symposium on Critical and Strategic Materials, Victoria, British Columbia, 2015, p. 13.

    M.J. Kabangu and P.L. Crouse, Separation of niobium and tantalum from Mozambican tantalite by ammonium bifluoride digestion and octanol solvent extraction, Hydrometallurgy, 129-130(2012), p. 151.

    M. Nete, W. Purcell, E. Snyders, J.T. Nel, and G. Beukes, Characterization and alternative dissolution of tantalite mineral samples from Mozambique, J. South Afr. Inst. Min. Metall., 112(2011), No. 12, p. 1079.

    X.H. Wang, S.L. Zheng, H.B. Xu, and Y. Zhang, Leaching of niobium and tantalum from a low-grade ore using a KOH roast-water leach system, Hydrometallurgy, 98(2009), No. 3-4, p. 219.

    H.M. Zhou, S.L. Zheng, Y. Zhang, and D.Q. Yi, A kinetic study of the leaching of a low-grade niobium-tantalum ore by concentrated KOH solution, Hydrometallurgy, 80(2005), No. 3, p. 170.

    D.A.R. Mackay and G.J. Simandl, Geology, market and supply chain of niobium and tantalum-a review, Miner. Deposita, 49(2014), p.1025.

Relative Articles

Yuri-Mikhailovich Grishin, Long Miao, Lev-Alekseevich Borisov, Nikolay-Mikhailovich Serykh, Alexey-Yurievich Kulagin. Applications of two electric arc plasma torches for the beneficiation of natural quartz [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-019-1734-8

View details

Sunil Kumar Tripathy, P. K. Banerjee, Nikkam Suresh. Effect of desliming on the magnetic separation of low-grade ferruginous manganese ore [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-015-1120-0

View details

M. Nete, F. Koko, T. Theron, W. Purcell, J. T. Nel. Primary beneficiation of tantalite using magnetic separation and acid leaching [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-014-1022-6

View details

Saikat Samanta, Manik Chandra Goswami, Tapan Kumar Baidya, Siddhartha Mukherjee, Rajib Dey. Mineralogy and carbothermal reduction behaviour of vanadium-bearing titaniferous magnetite ore in Eastern India [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-013-0815-3

View details

U. K. Sultana, A. S. W. Kurny. Dissolution kinetics of iron oxides in clay in oxalic acid solutions [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-012-0674-3

View details

Teng Zhang, Xiao-jun Hu, Qi-feng Shu, Kuo-Chih Chou. A model for estimating the rate constant between CO2-CO gas and molten slag containing iron oxides using optical basicity [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-012-0614-2

View details

Yunming Gao, Xingmin Guo, Kuochih Chou. Pure metal extraction from molten oxide slag by short-circuit galvanic cell [J]. 矿物冶金与材料学报(英文版).

View details

XU Chunbao, WU Shengli, SHOU Qiushuang, CANG Daqiang. Roles of Metallic Oxides in the Elimination Reactions of NO [J]. 矿物冶金与材料学报(英文版).

View details

CHEN Weiqing, ZHOU Rongzhang, HUH Wanwook, RHEE Changhee. Investigation of Nickel Oxide Used for Alloying in BOF Steelmaking [J]. 矿物冶金与材料学报(英文版).

View details

Citing articles(12)

Xue Bian, Peng Zhang, Yanping Li, et al. A review of niobium resource smelting and extraction technology. Canadian Metallurgical Quarterly, 2025. 必应学术
Nnaemeka Stanislaus Nzeh, Patricia Abimbola Popoola. Physical beneficiation of heavy minerals – Part 2: A state of the art literature review on magnetic and electrostatic concentration techniques. Heliyon, 2024, 10(11): e32201. 必应学术
Nnaemeka Stanislaus Nzeh, Patricia Abimbola Popoola, Abraham Adeleke, et al. Physical Concentration of Heavy Minerals: A Brief Review on Low and High Intensity Magnetic Separation Process Techniques. JOM, 2024, 76(3): 1329. 必应学术
More >

/

返回文章
返回