Cite this article as: |
Jian-fang Lü, Zhe-nan Jin, Hong-ying Yang, Lin-lin Tong, Guo-bao Chen, and Fa-xin Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 756-767. https://doi.org/10.1007/s12613-017-1459-5 |
Zhe-nan Jin E-mail: jinzn@smm.neu.edu.cn
[1] |
F. Méar, P. Yot, M. Cambon, and M. Ribes, The characterization of waste cathode-ray tube glass, Waste Manage., 26(2006), No. 12, p. 1468.
|
[2] |
Y.C. Jang and T.G. Townsend, Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates, Environ. Sci. Technol., 37(2003), No. 20, p. 4778.
|
[3] |
Q.B. Xu, G.M. Li, W.Z. He, J.W. Huang, and X. Shi, Cathode ray tube (CRT) recycling:current capabilities in China and research progress, Waste Manage., 32(2012), No. 8, p. 1566.
|
[4] |
J.R. Gregory, M.C. Nadeau, and R.E. Kirchain, Evaluating the economic viability of a material recovery system:the case of cathode ray tube glass, Environ. Sci. Technol., 43(2009), No. 24, p. 9245.
|
[5] |
E. Bernardo, R. Cedro, M. Florean, and S. Hreglich, Reutilization and stabilization of wastes by the production of glass foams, Ceram. Int., 33(2007), No. 6, p. 963.
|
[6] |
Z. Matamoros-Veloza, J.C. Rendón-Angeles, K. Yanagisawa, M.A. Cisneros-Guerrero, M.M. Cisneros-Guerrero, and L. Aguirre, Preparation of foamed glasses from CRT TV glass by means of hydrothermal hot-pressing technique, J. Eur. Ceram. Soc., 28(2008), No. 4, p. 739.
|
[7] |
F. Méar, P. Yot, R. Viennois, and M. Ribes, Mechanical behaviour and thermal and electrical properties of foam glass, Ceram. Int., 33(2007), No. 4, p. 543.
|
[8] |
F. Andreola, L. Barbieri, A. Corradi, I. Lancellotti, R. Falcone, and S. Hreglich, Glass-ceramics obtained by the recycling of end of life cathode ray tubes glasses, Waste Manage., 25(2005), No. 2, p. 183.
|
[9] |
E. Bernardo, Micro- and macro-cellular sintered glassceramics from wastes, J. Eur. Ceram. Soc., 27(2007), No. 6, p. 2415.
|
[10] |
T.C. Ling and C.S. Poon, Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar, J. Hazard. Mater., 192(2011), No. 2, p. 451.
|
[11] |
T.C. Ling and C.S. Poon, Effects of particle size of treated CRT funnel glass on properties of cement mortar, Mater. Struct., 46(2013), No. 1, p. 25.
|
[12] |
H. Miyoshi, D.P. Chen, and T. Akai, A novel process utilizing subcritical water to remove lead from wasted lead silicate glass, Chem. Lett., 33(2004), No. 8, p. 956.
|
[13] |
K. Pruksathorn and S. Damronglerd, Lead recovery from waste frit glass residue of electronic plant by chemical-electrochemical methods, Korean J. Chem. Eng., 22(2005), No. 6, p. 873.
|
[14] |
A.J. Saterlay, S.J. Wilkins, and R.G. Compton, Towards greener disposal of waste cathode ray tubes via ultrasonically enhanced lead leaching, Green Chem., 3(2001), No. 4, p. 149.
|
[15] |
W.Y. Yuan, J.H. Li, Q.W. Zhang, and F. Saito, Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass, Environ. Sci. Technol., 46(2012), No. 7, p. 4109.
|
[16] |
R. Sasai, H. Kubo, M. Kamiya, and H. Itoh, Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na2EDTA reagent, Environ. Sci. Technol., 42(2008), No. 11, p. 4159.
|
[17] |
M.J. Chen, F.S. Zhang, and J.X. Zhu, Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process, J. Hazard. Mater., 161(2009), No. 2-3, p. 1109.
|
[18] |
X.W. Lu, K.M. Shih, C.S. Liu, and F. Wang, Extraction of metallic lead from cathode ray tube (CRT) funnel glass by thermal reduction with metallic iron, Environ. Sci. Technol., 47(2013), No. 17, p. 9972.
|
[19] |
T. Okada and S. Yonezawa, Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass, Waste Manage., 33(2013), No. 8, p. 1758.
|
[20] |
M.F. Xing and F.S. Zhang, Nano-lead particle synthesis from waste cathode ray-tube funnel glass, J. Hazard. Mater., 194(2011), No. 5, p. 407.
|
[21] |
M.F. Xing, Y.P. Wang, J. Li, and H. Xu, Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process, J. Hazard. Mater., 305(2016), p. 51.
|
[22] |
J.F. Lv, H.Y. Yang, Z.N. Jin, Z.Y. Ma, and Y. Song, Feasibility of lead extraction from waste Cathode-Ray-Tubes (CRT) funnel glass through a lead smelting process, Waste Manage., 57(2016), p. 198.
|
[23] |
M. Chen, S. Raghunath, and B.J. Zhao, Viscosity measurements of SiO2-"FeO" -MgO system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 45(2014), No. 1, p. 58.
|
[24] |
A. Kondratiev, E. Jak, and P.C. Hayes, Predicting slag viscosities in metallurgical systems, JOM, 54(2002), No. 11, p. 41.
|
[25] |
A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman, Experimental investigation of the viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 slags, Metall. Mater. Trans. B, 38(2007), No. 6, p. 911.
|
[26] |
H.S. Park, S.S. Park, and I. Sohn, The viscous behavior of FeOt-Al2O3-SiO2 copper smelting slags, Metall. Mater. Trans. B, 42(2011), No. 4, p. 692.
|
[27] |
M. Chen, S. Raghunath, and B.J. Zhao, Viscosity of SiO2-"FeO" -Al2O3 system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 44(2013), No. 4, p. 820.
|
[28] |
F. Shahbazian, D. Sichen, and S. Seetharaman, The effect of addition of Al2O3 on the viscosity of CaO-"FeO" -SiO2-CaF2 slags, ISIJ Int., 42(2002), No. 2, p. 155.
|
[29] |
Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283.
|
[30] |
J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1291.
|
[31] |
Z.J. Wang, Q.F. Shu, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of P2O5 and FetO on the viscosity and slagstructure in steelmaking slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 758.
|
[32] |
E. Jak, B. Zhao, and P.C. Hayes, Experimental study of phase equilibria in the systems Fe-Zn-O and Fe-Zn-Si-O at metallic iron saturation, Metall. Mater. Trans. B, 31(2000), No. 6, p. 1195.
|
[33] |
H.Y. Shi, L.G. Chen, A. Malfliet, P.T. Jones, B. Blanpain, and M.X. Guo, Study of phase relations of ZnO-containing fayalite slag under Fe saturation, Metall. Mater. Trans. B, 47(2016), No. 5, p. 2820.
|
[34] |
Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2-CaO-MgO-9wt% Al2O3 slag system, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 353.
|
[35] |
C. Feng, M.S. Chu, J. Tang, J. Qin, F. Li, and Z.G. Liu, Effects of MgO and TiO2 on the viscous behaviors and phase compositions of titanium-bearing slag, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 868.
|
[36] |
W.H. Kim, I. Sohn, and D.J. Min, A study on the viscous behaviour with K2O additions in the CaO-SiO2-Al2O3-MgO-K2O quinary slag system, Steel Res. Int., 81(2010), No. 9, p. 735.
|
[37] |
K.J. Schumacher, J.F. White, and J.P. Downey, Viscosities in the calcium-silicate slag system in the range of 1798 K to 1973 K (1525℃ to 1700℃), Metall. Mater. Trans. B, 46(2015), No. 1, p. 119.
|
[38] |
L.S. Wu, J. Gran, and S. Du, The effect of calcium fluoride on slag viscosity, Metall. Mater. Trans. B, 42(2011), No. 5, p. 928.
|
[39] |
L. Wang, Y.R. Cui, J. Yang, C. Zhang, D.X. Cai, J.Q. Zhang, Y. Sasaki, and O. Ostrovski, Melting properties and viscosity of SiO2-CaO-Al2O3-B2O3 system, Steel Res. Int., 86(2015), No. 6, p. 670.
|
[40] |
J.H. Park, D.J. Min, and H.S. Song, Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2(-MgO)-Al2O3 slags, Metall. Mater. Trans. B, 35(2004), No. 2, p. 269.
|
[41] |
H. Kim, W.H. Kim, I. Sohn, and D.J. Min, The effect of MgO on the viscosity of the CaO-SiO2-20wt% Al2O3-MgO slag system, Steel Res. Int., 81(2010), No. 4, p. 261.
|
[42] |
H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, D.J. Min, and I. Sohn, Effect of Al2O3 and CaO/SiO2 on the iscosity of calcium-silicate-based slags containing 10 mass pct MgO, Metall. Mater. Trans. B, 44(2012), No. 1, p. 5.
|
[43] |
Z.J. Wang, Y.Q. Sun, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of Al2O3 on the viscosity and structure of CaO-SiO2-MgO-Al2O3-FetO slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 537.
|
[44] |
N. Saito, N. Hori, K. Nakashima, and K. Mori, Viscosity of blast furnace type slags, Metall. Mater. Trans. B, 34(2003), No. 5, p. 509.
|
[45] |
J.P. Yu, L.J. Wang, Y.X. Wang, Y.Q. Liu, and G.Z. Zhou, Effect of Fe2+ and Fe3+ on the properties of melts containing FeO x, J. Iron Steel Res., 26(2014), No. 10, p. 1.
|
[46] |
H. Park, J.Y. Park, G.H. Kim, and I. Sohn, Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 83(2012), No. 2, p. 150.
|
[47] |
K. Zheng, Z.T. Zhang, L.L. Liu, and X.D. Wang, Investigation of the viscosity and structural properties of CaO-SiO2-TiO2 slags, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1389.
|
[48] |
B.O. Mysen, L.W. Finger, D. Virgo, and F.A. Seifert, Curve-fitting of Raman spectra of silicate glasses, Am. Mineral., 67(1982), No. 7-8, p. 686.
|
[49] |
G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, V. Kharton, and F.M.B. Marques, Raman spectra of apatites:La10-xSi6-y (Al,Fe)yO26±δ, J. Raman Spectrosc., 38(2007), No. 1, p. 21.
|
[50] |
D.L.A. de Faria, S.V. Silva, and M.T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc., 28(1997), No. 11, p. 873.
|