留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 7
Jul.  2017
数据统计

分享

计量
  • 文章访问数:  542
  • HTML全文浏览量:  103
  • PDF下载量:  10
  • 被引次数: 0
Hong-rui Yue, Tao Jiang, Qiao-yi Zhang, Pei-ning Duan,  and Xiang-xin Xue, Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 768-775. https://doi.org/10.1007/s12613-017-1460-z
Cite this article as:
Hong-rui Yue, Tao Jiang, Qiao-yi Zhang, Pei-ning Duan,  and Xiang-xin Xue, Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 768-775. https://doi.org/10.1007/s12613-017-1460-z
引用本文 PDF XML SpringerLink
研究论文

Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃

  • 通讯作者:

    Tao Jiang    E-mail: jiangt@smm.neu.edu.cn

  • The electrorheological properties of CaO-SiO2-Al2O3-MgO-TiO2-TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel-Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.
  • Research Article

    Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃

    + Author Affiliations
    • The electrorheological properties of CaO-SiO2-Al2O3-MgO-TiO2-TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel-Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.
    • loading
    • [1]
      M. Parthasarathy and D.J. Klingenberg, Electrorheology:mechanisms and models, Mater. Sci. Eng. R, 17(1996), No. 2, p. 57.
      [2]
      Y. Hirose and Y. Otsubo, Electrorheology of suspensions of poly (ethylene glycol)/poly (vinyl alcohol) blend particles, Colloids Surf. A, 317(2008), No. 1-3, p. 438.
      [3]
      H. Block and J.P. Kelly, Electro-rheology, J. Phys. D, 21(1988), No. 12, p. 1661.
      [4]
      T. Hao, Electrorheological fluids, Adv. Mater., 13(2001), No. 24, p. 1847.
      [5]
      T. Hao, Electrorheological suspensions, Adv. Colloid Interface Sci., 97(2002), No. 1-3, p. 1.
      [6]
      T.C. Jordan and M.T. Shaw, Electrorheology, MRS Bull., 16(1991), No. 8, p. 38.
      [7]
      T. Jiang, D.M. Liao, M. Zhou, Q.Y. Zhang, H.R. Yue, S.T. Yang, P.N. Duan, and X.X. Xue, Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 804.
      [8]
      G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367.
      [9]
      S.F. Zhang, X. Zhang, W. Liu, X.W. Lv, C.G. Bai, and L. Wang, Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag, J. Non-Cryst. Solids, 402(2014), p. 214.
      [10]
      S. Ren, J.L. Zhang, L.S. Wu, W.J. Liu, Y.N. Bai, X.D. Xing, B.X. Su, and D.W. Kong, Influence of B2O3 on viscosity of high Ti-bearing blast furnace slag, ISIJ Int., 52(2012), No. 6, p. 984.
      [11]
      J.L. Liao, J. Li, X.D. Wang, and Z.T. Zhang, Influence of TiO2 and basicity on viscosity of Ti bearing slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 133.
      [12]
      T. Jiang, H.R. Yue, X.X. Xue, P.N. Duan, and Q.Y. Zhang, An Equipment of Electrorheological Effect Testing of Titanium-bearing Slag, Chinese Patent, Appl.201520798586.0, 2016.
      [13]
      P. Coussot, L. Tocquer, C. Lanos, and G. Ovarlez, Macroscopic vs. local rheology of yield stress fluids, J. Non-Newtonian Fluid Mech., 158(2009), No. 1-3, p. 85.
      [14]
      F.K. Oppong and J.R.D Bruyn, Mircorheology and jamming in a yield-stress fluid, Rheol. Acta, 50(2011), No. 4, p. 317.
      [15]
      T. Divoux, C. Barentin, and S. Manneville, Stress overshoot in a simple yield stress fluid:An extensive study combining rheology and velocimetry, Soft Matter, 7(2011), No. 19, p. 9335.
      [16]
      H.S. Tang and D.M. Kalyon, Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers, Rheol. Acta, 43(2004), No. 1, p. 80.
      [17]
      R. Roscoe, The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys., 3(1952), No. 8, p. 267.
      [18]
      Y.L. Zhen, G.H. Zhang, and K.C. Chou, Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles, Metall. Mater. Trans. B, 46(2015), No. 1, p. 155.
      [19]
      X.Y. Yuan, L.F. Chen, and L.T. Zhang, Influence of temperature on dielectric properties and microwave absorbing performances of TiC nanowires/SiO2 composites, Ceram. Int., 40(2014), No. 10, p. 15391.
      [20]
      A. Lengálová, V. Pavlı́nek, P. Sáha, J. Stejskal, and O. Quadrat, Electrorheology of polyaniline-coated inorganic particles in silicone oil, J. Colloid Interface Sci., 258(2003), No. 1, p. 174.
      [21]
      A.P. Gast and C.F. Zukoski, Electrorheological fluids as colloidal suspensions, Adv. Colloid Interface Sci., 30(1989), No. 89, p. 153.
      [22]
      L.C. Davis, Polarization forces and conductivity effects in electrorheological fluids, J. Appl. Phys., 72(1992), No. 4, p. 1334.
      [23]
      R.A. Anderson, Electrostatic forces in an ideal spherical-particle electrorheological fluid, Langmuir, 10(1994), No. 9, p. 2917.
      [24]
      T. Hao, A. Kawai, and F. Ikazaki, The yield stress equation for the electrorheological fluids, Langmuir, 16(2000), No. 7, p. 3058.
      [25]
      K.D. Weiss, J.D. Carlson, and J.P. Coulter, Material aspects of electrorheological systems, J. Intell. Mater. Syst. Struct., 4(1993), No. 1, p. 13.[1] C.F. Zukoski, Material properties and the electrorheological response, Annu. Rev. Mater. Sci., 23(1993), No. 1, p. 45.
      [26]
      D.J. Klingenberg and I.V. Charles, Studies on the steady-shear behavior of electrorheological suspensions, Langmuir, 6(1990), No. 1, p. 15.
      [27]
      J.W. Goodwin, G.M. Markham, and B. Vincent, Studies on model electrorheological fluids, J. Phys. Chem. B, 101(1997), No. 11, p. 1961.
      [28]
      J.K.G. Dhont and K. Kang, Electric-field-induced polarization of the layer of condensed ions on cylindrical colloids, Eur. Phys. J. E, 34(2011), No. 4, p. 1.

    Catalog


    • /

      返回文章
      返回