Cite this article as: |
E. Pourkhorshid, M. H. Enayati, S. Sabooni, F. Karimzadeh, and M. H. Paydar, Bulk Al-Al3Zr composite prepared by mechanical alloying and hot extrusion for high-temperature applications, Int. J. Miner. Metall. Mater., 24(2017), No. 8, pp. 937-942. https://doi.org/10.1007/s12613-017-1481-7 |
S. Sabooni E-mail: s.sabooni@ma.iut.ac.ir
[1] |
T.S. Srivatsan, M. Al-Hajri, W. Hannon, and V.K. Vasudevan, The strain amplitude-controlled cyclic fatigue, defomation and fracture behavior of 7034 aluminum alloy reinforced with silicon carbide particulates, Mater. Sci. Eng. A, 379(2004), No. 1-2, p. 181.
|
[2] |
O. Yılmaz and S. Buytoz, Abrasive wear of Al2O3-reinforced aluminium-based MMCs, Compos. Sci. Technol., 61(2001), No. 16, p. 2381.
|
[3] |
N. Saheb, T. Laoui, A.R. Daud, M. Harun, S. Radiman, and R. Yahaya, Influence of Ti addition on wear properties of Al-Si eutectic alloys, Wear, 249(2001), No. 8, p. 656.
|
[4] |
T. Yasmin, A.A. Khalid, and M.M. Haque, Tribological (wear) properties of aluminum-silicon eutectic base alloy under dry sliding condition, J. Mater. Process. Technol., 153-154(2004), p. 833.
|
[5] |
H.G. Zhu, C.C. Jar, J.Z. Song, J. Zhao, J.L. Li, and Z.H. Xie, High temperature dry sliding friction and wear behavior of aluminum matrix composites (Al3Zr+α-Al2O3)/Al, Tribol. Int., 48(2012), p. 78.
|
[6] |
H.U. Yang and K.M. Lee, Effects of MA processing variables on the fabrication of nanocrystalline Al3Nb powders, Met. Mater., 5(1999), No. 2, p. 171.
|
[7] |
K.I. Moon, S.H. Lee, and S.J. Kim, The effect of Cu and Zn on the phase stability of Ll2 Al3Hf intermetallic compound synthesized by mechanical alloying, Intermetallics, 10(2002), No. 8, p. 793.
|
[8] |
S.S. Nayak, S.K. Pabi, and B.S. Murty, Al-(LL2) Al3Ti nanocomposites prepared by mechanical alloying:Synthesis and mechanical properties, J. Alloys Compd., 492(2010), No. 1-2, p. 128.
|
[9] |
K.E. Knipling, Development of a Nano Scale Precipitation-Strengthened Creep-Resistant Aluminum Alloy Containing Trialuminide Precipitates[Dissertation], Northwestern University, Evanston, 2006, p. 24.
|
[10] |
Z.M. Yin, Q.L. Pan, Y.H. Zhang, and F. Jiang, Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys, Mater. Sci. Eng. A, 280(2000), No. 1, p. 151.
|
[11] |
Y.T. Zhao, S.L. Zhang, G. Chen, and X.N. Cheng, Effects of molten temperature on the morphologies of in situ Al3Zr and ZrB2 particles and wear properties of (Al3Zr+ZrB2)/Al composites, Mater. Sci. Eng. A, 457(2007), No. 1-2, p. 156.
|
[12] |
G.R. Li, Y.T. Zhao, H.M. Wang, G. Chen, Q.X. Dai, and X.N. Cheng, Fabrication and properties of in situ (Al3Zr+Al2O3)p/A356 composites cast by permanent mould and squeeze casting, J. Alloys Compd., 471(2009), No. 1-2, p. 530.
|
[13] |
H. Zhang, Y.S. He, and L.X. Li, Tensile deformation and fracture behavior of spray-deposition 7075/15SiCp aluminum matrix composite sheet at elevated temperatures, Mater. Charact., 59(2008), No. 8, p. 1078.
|
[14] |
J.C. Li, M. Zhao, and Q. Jiang, Wear behavior of Al90Mn8Ce2 alloy prepared by powder metallurgy, Mater. Des., 25(2004), No. 6, p. 495.
|
[15] |
C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No. 1-2, p. 1.
|
[16] |
M.H. Enayati and F.A. Mohamed, Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials, Int. Mater. Rev., 59(2014), No. 7, p. 394.
|
[17] |
H. Ashrafi, R. Emadi, and M.H. Enayati, Fabrication and characterization of nanocrystalline Al/Al12(Fe,V)3Si alloys by consolidation of mechanically alloyed powders, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 711.
|
[18] |
M. Jahedi, B. Mani, S. Shakoorian, E. Pourkhorshid, and M. Hossein Paydar, Deformation rate effect on the microstructure and mechanical properties of Al-SiCp composites consolidated by hot extrusion, Mater. Sci. Eng. A, 556(2012), p. 23.
|
[19] |
B. Mani, M. Jahedi, and M.H. Paydar, Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature, Powder Technol., 219(2012), p. 1.
|
[20] |
S. Srinivasan, P.B. Desch, and R.B. Schwarz, Metastable phases in the Al3X (X=Ti, Zr, Hf) intermetallic system, Scr. Metall. Mater., 25(1991), No. 11, p. 2513.
|
[21] |
H.U. yang and K.M. Lee, Effects of ma processing variables on the fabrication of nanocrystalline Al3Nb powders, Met. Mater., 5(1999), No. 2, p. 171.
|
[22] |
H. Mostaan, F. Karimzadeh, and M.H. Abbasi, Synthesis and formation mechanism of nanostructured NbAl3 intermetallic during mechanical alloying and a kinetic study on its formation, Thermochim. Acta, 529(2012), p. 36.
|
[23] |
H. Abdoli, M. Ghanbari, and S. Baghshahi, Thermal stability of nanostructured aluminum powder synthesized by high-energy milling, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6702.
|
[24] |
N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub, and R. Kirchner, Spark plasma sintering of metals and metal matrix nanocomposites:a review, J. Nanomater., 2012(2012), art. No. 983470.
|
[25] |
R.K. Goswami, A. Dhar, A.K. Srivastava, A.K. Gupta, O.P. Grover, and U.C. Jindal, Effect of deformation and ceramic reinforcement on work hardening behavior of hot extruded 2124 Al-SiC p metal matrix composites, J. Compos. Mater., 33(1999), No. 13, p. 1160.
|
[26] |
P. Málek, M. JaneČek, B. Smola, P. BartuŠka, and J. PleŠtil, Structure and properties of rapidly solidified Al-Zr-Ti alloys, J. Mater. Sci., 35(2000), No. 10, p. 2625.
|