留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 8
Aug.  2017
数据统计

分享

计量
  • 文章访问数:  514
  • HTML全文浏览量:  86
  • PDF下载量:  13
  • 被引次数: 0
Zhu Wang, Lei Zhang, Xian Tang, Zhao-yang Cui, Jun-peng Xue, and Min-xu Lu, Investigation of the deterioration of passive films in H2S-containing solutions, Int. J. Miner. Metall. Mater., 24(2017), No. 8, pp. 943-953. https://doi.org/10.1007/s12613-017-1482-6
Cite this article as:
Zhu Wang, Lei Zhang, Xian Tang, Zhao-yang Cui, Jun-peng Xue, and Min-xu Lu, Investigation of the deterioration of passive films in H2S-containing solutions, Int. J. Miner. Metall. Mater., 24(2017), No. 8, pp. 943-953. https://doi.org/10.1007/s12613-017-1482-6
引用本文 PDF XML SpringerLink
研究论文Open Access

Investigation of the deterioration of passive films in H2S-containing solutions

  • 通讯作者:

    Lei Zhang    E-mail: zhanglei@ustb.edu.cn

  • The effect of H2S on the corrosion behavior of 316L stainless steel was investigated using electrochemical methods by changing the gas condition from CO2 to H2S and then back to CO2. The presence of H2S showed an acceleration effect on the corrosion of 316L stainless steel in comparison with CO2. The acceleration effect remained even after the complete removal of H2S by CO2, indicating that the passive film was irreversibly damaged. X-ray photoelectron spectroscopy (XPS) analysis indicated that the passive film was composed of Cr2O3, Fe2O3, and FeS2 after being immersed in H2S-containing solutions. The semiconducting property of the passive film was then investigated by using the Mott-Schottky approach. The presence of sulfides resulted in higher acceptor and donor densities and thus was responsible for the deterioration of passive films.
  • Research ArticleOpen Access

    Investigation of the deterioration of passive films in H2S-containing solutions

    + Author Affiliations
    • The effect of H2S on the corrosion behavior of 316L stainless steel was investigated using electrochemical methods by changing the gas condition from CO2 to H2S and then back to CO2. The presence of H2S showed an acceleration effect on the corrosion of 316L stainless steel in comparison with CO2. The acceleration effect remained even after the complete removal of H2S by CO2, indicating that the passive film was irreversibly damaged. X-ray photoelectron spectroscopy (XPS) analysis indicated that the passive film was composed of Cr2O3, Fe2O3, and FeS2 after being immersed in H2S-containing solutions. The semiconducting property of the passive film was then investigated by using the Mott-Schottky approach. The presence of sulfides resulted in higher acceptor and donor densities and thus was responsible for the deterioration of passive films.
    • loading
    • [1]
      J.H. Ding, L. Zhang, M.X. Lu, J. Wang, Z.B. Wen, and W.H. Hao, The electrochemical behaviour of 316L austenitic stainless steel in Cl-containing environment under different H2S partial pressures, Appl. Surf. Sci., 289(2014), p. 33.
      [2]
      W. Deng, P. Bodart, M. Pruski, and B.H. Shanks, Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating, Microporous Mesoporous Mater., 52(2002), No. 3, p. 169.
      [3]
      X.H. Zhao, Y. Han, Z.Q. Bai, and B. Wei, The experiment research of corrosion behaviour about Ni-based alloys in simulant solution containing H2S/CO2, Electrochim. Acta, 56(2011), No. 22, p. 7725.
      [4]
      O.E. Albores-Silva, E.A. Charles, and C. Padovani, Effect of chloride deposition on stress corrosion cracking of 316L stainless steel used for intermediate level radioactive waste containers, Corros. Eng. Sci. Technol., 46(2011), No. 2, p. 124.
      [5]
      S.P. Dubey, A.D. Dwivedi, M. Sillanpää, H. Lee, Y.N. Kwon, and C. Lee, Adsorption of As (V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions, Chemosphere, 169(2017), p. 99.
      [6]
      M. Ghahari, D. Krouse, N. Laycock, T. Rayment, C. Padovani, M. Stampanoni, F. Marone, R. Mokso, and A.J. Davenport, Synchrotron X-ray radiography studies of pitting corrosion of stainless steel:Extraction of pit propagation parameters, Corros. Sci., 100(2015), p. 23.
      [7]
      P. Alphonse and M. Courty, Structure and thermal behavior of nanocrystalline boehmite, Thermochim. Acta, 425(2005), No. 1-2, p. 75.
      [8]
      R.L. Price, L.G. Gutwein, L. Kaledin, F. Tepper, and T.J. Webster, Osteoblast function on nanophase alumina materials:Influence of chemistry, phase, and topography, J. Biomed. Mater. Res., 67A (2003), No. 4, p. 1284.
      [9]
      L.K. Zhu, Y. Yan, L.J. Qiao, and A.A. Volinsky, Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load, Corros. Sci., 77(2013), p. 360.
      [10]
      T.J. Webster, E.L. Hellenmeyer, and R.L. Price, Increased osteoblast functions on theta+delta nanofiber alumina, Biomaterials, 26(2005), No. 9, p. 953.
      [11]
      L. Gardner, A. Insausti, K.T. Ng, and M. Ashraf, Elevated temperature material properties of stainless steel alloys, J. Constr. Steel Res., 66(2010), No. 5, p. 634.
      [12]
      A. Abbasi Aghuy, M. Zakeri, M.H. Moayed, and M. Mazinani, Effect of grain size on pitting corrosion of 304L austenitic stainless steel, Corros. Sci., 94(2015), p. 368.
      [13]
      Y.Y. Zhao, R.L. Frost, W.N. Martens, and H.Y. Zhu, Growth and surface properties of boehmite nanofibers and nanotubes at low temperatures using a hydrothermal synthesis route, Langmuir, 23(2007), No. 19, p. 9850.
      [14]
      Y.D. Deng, Q. Yang, G.W. Lu, and W.B. Hu, Synthesis of γ-Al2O3 nanowires through a boehmite precursor route, Ceram. Int., 36(2011), No. 6, p. 1773.
      [15]
      I. Taji, M.H. Moayed, and M. Mirjalili, Correlation between sensitisation and pitting corrosion of AISI 403 martensitic stainless steel, Corros. Sci., 92(2015), p. 301.
      [16]
      Y.M. Xue, J. Lin, Y. Fan, J. Li, A. Elsanousi, X.W. Xu, D. Liu, Y. Huang, Y. Liu, F.B. Meng, J. Zou, and C.C. Tang, Synthesis and hydrogen absorption of high-specific-surface ultrafine theta-Al2O3 nanowires, J. Cryst. Growth, 382(2013), p. 52.
      [17]
      S.F. Yang and D.D. Macdonald, Theoretical and experimental studies of the pitting of type 316L stainless steel in borate buffer solution containing nitrate ion, Electrochim. Acta, 52(2007), No. 5, p. 1871.
      [18]
      T.B. He, L. Xiang, and S.L. Zhu, Different nanostructures of boehmite fabricated by hydrothermal process:effects of pH and anions, CrystEngComm, 11(2009), No. 7, p. 1338.
      [19]
      I. Olefjord and L. Wegrelius, Surface analysis of passive state, Corros. Sci, 31(1990), p. 89.
      [20]
      R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote, and U. Stolz, The passivity of iron-chromium alloys, Corros. Sci., 29(1989), No. 7, p. 899.
      [21]
      S.C. Shen, Q. Chen, P.S. Chow, G.H. Tan, X.T. Zeng, Z. Wang, and R.B.H. Tan, Steam-assisted solid wet-gel synthesis of high-quality nanorods of boehmite and alumina, J. Phys. Chem. C, 111(2007), No. 2, p. 700.
      [22]
      J.F. Hochepied, O. Ilioukhina, and M.H. Berger, Effect of the mixing procedure on aluminium (oxide)-hydroxide obtained by precipitation of aluminium nitrate with soda, Mater. Lett., 57(2003), No. 19, p. 2817.
      [23]
      C.O.A. Olsson and D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochim. Acta, 48(2003), No. 9, p. 1093.
      [24]
      X.Y. Chen, Z.J. Zhang, X.L. Li, and S.W. Lee, Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals, Solid State Commun., 145(2008), No. 7-8, p. 368.
      [25]
      H. Luo, C.F. Dong, K. Xiao, and X.G. Li, The passive behaviour of ferritic stainless steel containing alloyed tin in acidic media, RSC Adv., 6(2016), No. 12, p. 9940.
      [26]
      J. Banas, U. Lelek-Borkowska, B. Mazurkiewicz, and W. Solarski, Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water, Electrochim. Acta, 52(2007), No. 18, p. 5704.
      [27]
      Z.F. Zhu, S. Cheng, H. Liu, X.N. Dong, and Y. Shi, Hydrothermal synthesis of hexagon nanosheets self-assembled 3D stalk-like alumina, Mater. Lett., 123(2014), p. 258.
      [28]
      W.Q. Cai, S.G. Chen, J.G. Yu, Y.Z. Hu, C.X. Dang, and S.H. Ma, Template-free solvothermal synthesis of hierarchical boehmite hollow microspheres with strong affinity toward organic pollutants in water, Mater. Chem. Phys., 138(2013), No. 1, p. 167.
      [29]
      C.H. Liang, W. Hua, and N.B. Huang, Effects of sulphate-reducing bacteria on corrosion behaviour of 2205 duplex stainless steel, J. Iron Steel Res. Int., 21(2014), No. 4, p. 444.
      [30]
      J.X. Yang, J.J. Ma, and Y.W. Huang, Hydrothermal synthesis of monodisperse leaf-like boehmite nanosheets:transformation from irregular to regular morphology, Mater. Sci. Forum, 694(2011), p. 28.
      [31]
      Y.S. Choi, S. Nesic, and S. Ling, Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions, Electrochim. Acta, 56(2011), No. 4, p. 1752.
      [32]
      H.H. Ge, Z. G.D. Zhou, and W.Q. Wu, Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film, Appl. Surf. Sci., 211(2003), No. 1-4, p. 321.
      [33]
      G.C. Li, Y.Q. Liu, D. Liu, L.H. Liu, and C.G. Liu, Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant, Mater. Res. Bull., 45(2010), No. 10, p. 1487.
      [34]
      F. Rashidi, A.N. Kharat, A.M. Rashidi, E. Lima, V. Lara, and J.S. Valente, Fractal geometry approach to describe mesostructured boehmite and gamma-alumina nanorods, Eur. J. Inorg. Chem., 2010, No. 10, p. 1544.
      [35]
      W. He, O.O. Knudsen, and S. Diplas, Corrosion of stainless steel 316L in simulated formation water environment with CO2-H2S-Cl-, Corros. Sci., 51(2009), No. 12, p. 2811.
      [36]
      X. Bokhimi, A. Morales, and J.S. Valente, Sulfate ions and boehmite crystallization in a sol made with aluminum tri-sec-butoxide and 2-propanol, J. Phys. Chem. C, 111(2007), No. 1, p. 103.
      [37]
      S. Nešić, Key issues related to modelling of internal corrosion of oil and gas pipelines-A review, Corros. Sci., 49(2007), No. 12, p. 4308.
      [38]
      L. Jun and D.D. Macdonald, The passivity of iron in the presence of ethylenediaminetetraacetic acid. Ⅱ. The defect and electronic structures of the barrier layer, J. Electrochem. Soc., 148(2001), No. 11, p. B425.
      [39]
      M.M. Amini and M. Mirzaee, Effect of solution chemistry on preparation of boehmite by hydrothermal assisted sol-gel processing of aluminum alkoxides, J. Sol-Gel Sci. Technol., 36(2005), No. 1, p. 19.
      [40]
      M. Nguefack, A.F. Popa, S. Rossignol, and C. Kappenstein, Preparation of alumina through a sol-gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite, Phys. Chem. Chem. Phys., 5(2003), No. 19, p. 4279.
      [41]
      G.S. Lauvstad, R. Johnsen, O. Borck, E.F. da Silva, and J.C. Walmsley, Breakdown in passivity of austenitic stainless steels in Cl-and H2S-modelling and characterization of the pit initiation process,[in] Corrosion 2007, Nashville, NACE-07660.
      [42]
      S.C. Kuiry, E. Megen, S.D. Patil, S.A. Deshpande, and S. Seal, Solution-based chemical synthesis of boehmite nanofibers and alumina nanorods, J. Phys. Chem. B, 109(2005), No. 9, p. 3868.
      [43]
      M. Ben Salah, R. Sabot, P. Refait, I. Liascukiene, C. Methivier, J. Landoulsi, L. Dhouibi, and M. Jeannin, Passivation behaviour of stainless steel (UNS N-08028) in industrial or simplified phosphoric acid solutions at different temperatures, Corros. Sci., 99(2015), p. 320.
      [44]
      B. Dash, B.C. Tripathy, I.N. Bhattacharya, S.C. Das, C.R. Mishra, and B.K. Mishra, Precipitation of boehmite in sodium aluminate liquor, Hydrometallurgy, 95(2009), No. 3-4, p. 297.
      [45]
      E. Abelev, J. Sellberg, T.A. Ramanarayanan, and S.L. Bernasek, Effect of H2S on Fe corrosion in CO2-saturated brine, J. Mater. Sci., 44(2009), No. 22, p. 6167.
      [46]
      A. Alemi, Z. Hosseinpour, M. Dolatyari, and A. Bakhtiar, Boehmite (γ-AlOOH) nanoparticles:Hydrothermal synthesis, characterization, pH-controlled morphologies, optical properties, and DFT calculations, Phys. Status Solidi B, 249(2012), No. 6, p. 1264.
      [47]
      L. Liu, M.Y. Wang, Z. Wang, and Y. Zhang, Corrosion behavior of 316L stainless steel anode in alkaline sulfide solutions and the consequent influence on Ga electrowinning, Hydrometallurgy, 157(2015), p. 285.
      [48]
      C.E. Corbató, R.T. Tettenhorst, and G.G. Christoph, Structure refinement of deuterated boehmite, Clays Clay Miner., 33(1985), No. 1, p. 71.
      [49]
      S. Ningshen, U.K. Mudali, V.K. Mittal, and H.S. Khatak, Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels. Corros. Sci., 49(2007), No. 2, p. 481.
      [50]
      B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys., 92(1990), No. 1, p. 508.
      [51]
      E.E. Oguzie, J.B. Li, Y.Q. Liu, D.M. Chen, Y. Li, K. Yang, and F.H. Wang, The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels, Electrochim. Acta, 55(2010), No. 17, p. 5028.
      [52]
      K.N. Ohs, S. Ahn, K.S. Eom, and H.S. Kwon, A study on the localized corrosion and repassivation kinetics of Fe-20Cr-xNi (x=0-20wt%) stainless steels via electrochemical analysis, Corros. Sci., 100(2015), p. 158.
      [53]
      B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys., 113(2000), No. 18, p. 7756.
      [54]
      D.M. Bylander and L. Kleinman, Good semiconductor band gaps with a modified local-density approximation, Phys. Rev. B, 11(1990), p. 7868.
      [55]
      A.M.P. Simoes, M.G.S. Ferreira, B. Rondot, and M. de Cunha Belo, Study of passive films formed on AISI 304 stainless steel by impedance measurements and photoelectrochemistry, J. Electrochem. Soc., 137(1990), No. 1, p. 82.
      [56]
      E. Sikora and D.D. Macdonald, Nature of the passive film on nickel, Electrochim. Acta, 48(2002), No. 1, p. 69.
      [57]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.
      [58]
      J.C. Liu, G. Zhang, S. Nagao, J.T. Jiu, M. Nogi, T. Sugahara, J.S. Ma, and K. Suganuma, Metastable pitting and its correlation with electronic properties of passive films on Sn-xZn solder alloys, Corros. Sci., 99(2015), p. 154.
      [59]
      H. Xu, P. Reunchan, S. X. Ouyang, H. Tong, N. Umezawa, T. Kako, and J. Ye, Anatase TiO2 single crystals exposed with high-reactive{111}facets toward efficient H2 evolution, Chem. Mater., 25(2013), No. 3, p. 405.
      [60]
      M. BenSalah, R. Sabot, E. Triki, L. Dhouibi, P. Refait, and M. Jeannin, Passivity of Sanicro28(UNS N-08028) stainless steel in polluted phosphoric acid at different temperatures studied by electrochemical impedance spectroscopy and Mott-Schottky analysis, Corros. Sci., 86(2014), p. 61.
      [61]
      D.H. Lee and R.A. Condrate Sr., An FTIR spectral investigation of the structural species found on alumina surfaces, Mater. Lett., 23(1995), No. 4-6, p. 241.
      [62]
      L.V. Taveira, M.F. Montemor, M.D.C. Belo, M.G. Ferreira, and L.F.P. Dick, Influence of incorporated Mo and Nb on the Mott-Schottky behaviour of anodic films formed on AISI 304L, Corros. Sci., 52(2010), No. 9, p. 2813.
      [63]
      S. Musić,Đ. Dragčević, and S. Popović, Hydrothermal crystallization of boehmite from freshly precipitated aluminum hydroxide, Mater. Lett., 40(1999), No. 6, p. 269.
      [64]
      G. García, M. Falco, P. Crespo, S. Cabrera, and U. Sedran, Characterization and catalytic evaluation of aluminum oxides obtained by the atrane route, Catal. Today, 166(2011), No. 1, p. 60.
      [65]
      J. Williamson and O.B. Isgor, The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar, Corros. Sci., 106(2016), p. 82.
      [66]
      D.D. Macdonald, Some personal adventures in passivity-A review of the point defect model for film growth, Russ. J. Electrochem., 48(2012), No. 3, p. 235.
      [67]
      X.B. Li, L. Yan, Q.S. Zhou, G.H. Liu, and Z.H. Peng, Thermodynamic model for equilibrium solubility of gibbsite in concentrated NaOH solutions, Trans. Nonferrous Met. Soc. China, 22(2012), No. 2, p. 447.
      [68]
      D.D. Macdonald, The point defect model for the passive state, J. Electrochem. Soc., 139(1992), No. 12, p. 3434.
      [69]
      D. Panias, P. Asimidis, and I. Paspaliaris, Solubility of boehmite in concentrated sodium hydroxide solutions:model development and assessment, Hydrometallurgy, 59(2001), No. 1, p. 15.
      [70]
      Y.X. Qiao, Y.G. Zheng, W. Ke, and P.C. Okafor, Electrochemical behaviour of high nitrogen stainless steel in acidic solutions, Corros. Sci., 51(2009), No. 5, p. 979.
      [71]
      M.J. Carmezim, A.M. Simões, M.F. Montemor, and M.D.C. Belo, Capacitance behaviour of passive films on ferritic and austenitic stainless steel, Corros. Sci., 47(2005), No. 3, p. 581.1] U. Nylén, J.F. Delgado, S. Järås, and M. Boutonnet, Low and high-pressure ring opening of indan over 2 wt.% Pt, Ir and bi-metallic Pt25Ir75/boehmite catalysts prepared from microemulsion systems, Appl. Catal. A, 262(2004), No. 2, p. 189.

    Catalog


    • /

      返回文章
      返回