Cite this article as: |
Yan Zeng, Peng-peng Zuo, Xiao-chun Wu, and Shu-wen Xia, Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13, Int. J. Miner. Metall. Mater., 24(2017), No. 9, pp. 1004-1009. https://doi.org/10.1007/s12613-017-1489-z |
Yan Zeng E-mail: zy2002_2006@163.com
[1] |
X.X. Xu, Y. Yu, W.L. Cui, B.Z. Bai, and J.L. Gu, Ultra-high cycle fatigue behavior of high strength steel with carbide free bainite/martensite complex microstructure, Int. J. Miner. Metall. Mater., 16(2009), No. 3, p. 285.
|
[2] |
D. Mellouli, N. Haddar, A. Koster, and H.F. Ayedi, Hardness effect on thermal fatigue damage of hot-working tool steel, Eng. Fail. Anal., 45(2014), p. 85.
|
[3] |
C.J. Hyde, W. Sun, and T.H. Hyde, An investigation of the failure mechanisms in high temperature materials subjected to isothermal and anisothermal fatigue and creep conditions, Procedia Eng., 10(2011), p. 1157.
|
[4] |
A. Navarro, Cumulative fatigue damage conference, Int. J. Fatigue, 27(2005), No. 8, p. 837.
|
[5] |
J. Sjöström and J. Bergström, Evaluation of the cyclic behavior during high temperature fatigue of hot-work tool steel,[in] The 6th International Tooling Conference, Karlstad, 2002, p. 603.
|
[6] |
P.C. Xia, Y.B. Chen, X.Y. Ge, and M.H. Wang, Research status and development trends of thermal fatigue property of hot die steels, Heat Treat. Met., 33(2008), No. 12, p. 1.
|
[7] |
C. Meng, H. Zhou, X. Tong, D.L. Cong, C.W. Wang, and L.Q. Ren, Comparison of thermal fatigue behavior and microstructure of different hot work tool steels processed by biomimetic couple laser remelting process, Mater. Sci. Technol., 29(2013), No. 4, p. 496.
|
[8] |
J. Sjöström, Chromium Martensitic Hot-work Tool Steels-Damage, Performance and Microstructure[Dissertation], Karlstad University, Karlstad, 2004, p. 51.
|
[9] |
A.G. Ning, W.W. Mao, X.C. Chen, H.J. Guo, and J. Guo, Precipitation behavior of carbides in H13 hot work die steel and its strengthening during tempering, Metals, 7(2017), No. 3, p. 70.
|
[10] |
H. Wang, J. Li, C.B. Shi, J. Li, and B. He, Evolution of carbides in H13 steel in heat treatment process, Mater. Trans., 58(2017), No. 2, p. 152.
|
[11] |
J. Sjöström and J. Bergström, Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments, J. Mater. Process. Technol., 153-154(2004), p. 1089.
|
[12] |
A.V. Vlasov, Thermomechanical fatigue of dies for hot stamping, Steel Transl., 46(2016), No. 5, p. 356.
|
[13] |
D. Delagnes, F. Rézaï-Aria, and C. Levaillant, Influence of testing and tempering temperatures on fatigue behavior, life and crack initiation mechanisms in a 5% Cr martensitic steel, Procedia Eng., 2(2010), No. 1, p. 427.
|
[14] |
A.F. Armas, C. Petersen, R. Schmitt, M. Avalos, and I. Alvarez-Armas, Mechanical and microstructural behavior of isothermally and thermally fatigued ferritic/martensitic steels, J. Nucl. Mater., 307-311(2002), p. 509.
|
[15] |
Y.N. Rabotnov, Creep Problems in Structural Members, North Holland Publishing Company, North Holland, 1969, p. 25.
|
[16] |
F. Qayyum, M. Shah, O. Shakeel, F. Mukhtar, M. Salem, and F. Rezai-Aria, Numerical simulation of thermal fatigue behavior in a cracked disc of AISI H-11 tool steel, Eng. Fail. Anal., 62(2016), p. 242.
|
[17] |
X.B. Hu, L. Li, X.C. Wu, and M. Zhang, Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium, Int. J. Fatigue, 28(2006), No. 3, p. 175.
|