Cite this article as: |
Hui-ping Duan, Xiao Liu, Xian-zhe Ran, Jia Li, and Dong Liu, Mechanical properties and microstructure of 3D-printed high Co-Ni secondary hardening steel fabricated by laser melting deposition, Int. J. Miner. Metall. Mater., 24(2017), No. 9, pp. 1027-1033. https://doi.org/10.1007/s12613-017-1492-4 |
Hui-ping Duan E-mail: hpduan@buaa.edu.cn
[1] |
P.M. Machmeier, C.D. Little, M.H. Horowitz, and R.P. Oates, Development of a strong (1650MNm-2 tensile strength) martensitic steel having good fracture toughness, Met. Technol., 6(1979), No. 1, p. 291.
|
[2] |
R. Ayer and P.M. Machmeier, Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels, Metall. Mater. Trans. A, 27(1996), No. 9, p. 2510.
|
[3] |
J. Schmidt and F. Haessner, Recovery and recrystallization of high purity lead determined with a low temperature calorimeter, Scripta Metall. Mater., 25(1991), No. 4, p. 969.
|
[4] |
R.M. Hemphill and D.E. Wert, High Strength, High Fracture Toughness Structural Alloy, US Patent, No. 07/475773, 1992.
|
[5] |
G.B. Olson, Genomic materials design:The ferrous frontier, Acta Mater., 61(2013), p. 771.
|
[6] |
R. Ayer and P.M. Machmeier, Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100, Metall. Trans. A, 24(1993), No. 9, p. 1943.
|
[7] |
R. Ayer and P. Machmeier, On the characteristics of M2C carbides in the peak hardening regime of AerMet 100 steel, Metall. Mater. Trans. A, 29(1998), No. 3, p. 903.
|
[8] |
Y.J. Zhao, X.P. Ren, W.C. Yang, and Y. Zang, Design of a low-alloy high-strength and high-toughness martensitic steel, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 733.
|
[9] |
W.E. Frazier, Metal additive manufacturing:a review, J. Mater. Eng. Perform, 23(2014), No. 6, p. 1917.
|
[10] |
Y.Z. Zhang, C. Huang, and R. Vilar, Microstructure and properties of laser direct deposited CuNi17Al3Fe1.5Cr alloy, Int. J. Miner. Metall. Mater., 18(2011), No. 3, p. 325.
|
[11] |
M. Yan, S.Q. Zhang, and H.M. Wang, Solidification microstructure and mechanical properties of corrosion-resistant ultrahigh strength steel AerMet 100 fabricated by laser melting deposition, Acta Metall. Sinica, 43(2007), No. 5, p. 472.
|
[12] |
X.Z. Ran, D. Liu, A. Li, H.M. Wang, H.B. Tang, and X. Cheng, Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel, Mater. Sci. Eng. A, 663(2016), p. 69.
|
[13] |
T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, and H.M. Wang, Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing, J. Alloys Compd., 632(2015), p. 505.
|
[14] |
C.C. Wang, C. Zhang, and Z.G. Yang, Austenite layer and precipitation in high Co-Ni maraging steel, Micron, 67(2014), p. 112.
|
[15] |
E. Clementi, D.L. Raimondi, and W.P. Reinhardt, Atomic screening constants from SCF Functions. Ⅱ. Atoms with 37 to 86 electrons, J. Chem. Phys., 47(1967), No. 4, p. 1300.
|
[16] |
C.C. Wang, C. Zhang, Z.G. Yang, J. Su, and Y.Q. Weng, Analysis of fracture toughness in high Co-Ni secondary hardening steel using FEM, Mater. Sci. Eng. A, 646(2015), p. 1.
|
[17] |
X.H. Shi, W.D. Zeng, Q.Y. Zhao, W.W. Peng, and C. Kang, Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482℃, J. Alloy. Compd., 679(2016), p. 184.
|