Cite this article as: |
Oksana Velgosova, Elena Čižmárová, Jaroslav Málek, and Jana Kavuličova, Effect of storage conditions on long-term stability of Ag nanoparticles formed via green synthesis, Int. J. Miner. Metall. Mater., 24(2017), No. 10, pp. 1177-1182. https://doi.org/10.1007/s12613-017-1508-0 |
Oksana Velgosova E-mail: oksana.velgosova@tuke.sk
[1] |
M. Ider, K. Abderrafi, A. Eddahbi, S. Ouaskit, and A. Kassiba, Rapid synthesis of silver nanoparticles by microwave-polyol method with the assistance of latex copolymer, J. Cluster Sci., 28(2016), No. 3, p. 1.
|
[2] |
I.K. Shim, Y. Lee, K.J. Lee, and J. Joung, An organometallic route to highly monodispersed silver nanoparticles and their application to ink-jet printing, Mater. Chem. Phys., 110(2008), No. 2-3, p. 316.
|
[3] |
J. Davenas, A. Ltaief, V. Barlier, G. Boiteux, and A. Bouazizi, Nanomaterials for photovoltaic conversion, Mater. Sci. Eng. C, 28(2008), No. 5-6, p. 744.
|
[4] |
N.A.C. Lah and M.R. Johan, Facile shape control synthesis and optical properties of silver nanoparticles stabilized by Daxad 19 surfactant, Appl. Surf. Sci., 257(2011), p. 7494.
|
[5] |
C.S. Espenti, K.S.V. Krishna Rao, and K.M. Rao, Bio-synthesis and characterization of silver nanoparticles using Terminalia chebula leaf extract and evaluation of its antimicrobial potential, Mater. Lett., 174(2016), p. 129.
|
[6] |
J. Venugobal and K. Anandalakshmi, Green synthesis of silver nanoparticles using Commiphora caudata leaves extract and the study of bactericidal efficiency, J. Cluster Sci., 27(2016), No. 5, p. 1683.
|
[7] |
W.C. Zhang, L. Zhang, and Y. Sun, Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine, Front. Chem. Sci. Eng., 9(2015), No. 4, p. 494.
|
[8] |
A. Rostami-Vartooni, M. Nasrollahzadeh, and M. Alizadeh, Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red, J. Alloys Compd., 680(2016), p. 309.
|
[9] |
M. Yilmaz, H. Turkdemir, M.A. Kilic, E. Bayram, A. Ciceke, A. Mete, and B. Ulug, Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana, Mater. Chem. Phys., 130(2011), No. 3, p. 1195.
|
[10] |
Z.Y. Zhao, M.H. Wang, and T.T. Liu, Tribulus terrestris leaf extract assisted green synthesis and gas sensing properties of Ag-coated ZnO nanoparticles, Mater. Lett., 158(2015), p. 274.
|
[11] |
S.M. Roopan, Rohit, G. Madhumitha, A.A. Rahuman, C. Kamaraj, A. Bharathi, and T.V. Surendra, Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity, Ind. Crops Prod., 43(2013), No. 1, p. 631.
|
[12] |
A.M. Fayaz, M. Girila, M. Rahman, R. Venkatesan, and P.T. Kalaichelvan, Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus, Process Biochem., 46(2011), No. 10, p. 1958.
|
[13] |
Sh. Sohrabnezhad, M. Rassa, and A. Seifi, Green synthesis of Ag nanoparticles in montmorillonite, Mater. Lett., 168(2016), p. 28.
|
[14] |
V. Vinmathi and S.J.P. Jacob, A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy, Bull. Mater. Sci., 38(2015), No. 3, p. 625.
|
[15] |
S. Joseph and B. Mathew, Microwave-assisted facile green synthesis of silver nanoparticles and spectroscopic investigation of the catalytic activity, Bull. Mater. Sci., 38(2015), No. 3, p. 659.
|
[16] |
S.P. Shukla, M. Roy, P. Mukherjee, A.K. Tyagi, T. Mukherjee, and S. Adhikari, Interaction of bilirubin with Ag and Au ions:green synthesis of bilirubin-stabilized nanoparticles, J. Nanopart. Res., 14(2012), No. 7, p. 981.
|
[17] |
S.P. Shukla, M. Roy, P. Mukherjee, L. Das, S. Neogy, D. Srivastava, and S. Adhikari, Size selective green synthesis of silver and gold nanoparticles:Enhanced antibacterial efficacy of resveratrol capped silver sol, J. Nanosci. Nanotechnol., 16(2016), No. 3, p. 2453.
|
[18] |
J.M. Gorham, A.B. Rohlfing, K.A. Lippa, R.I. MacCuspie, A. Hemmati, and R.D. Holbrook, Storage wars:how citrate-capped silver nanoparticle suspensions are affected by not-so-trivial decisions, J. Nanopart. Res., 16(2014), No. 4, p. 2339.
|
[19] |
E. Izak-Nau, A. Huk, B. Reidy, H. Uggerud, M. Vadset, S. Eiden, M. Voetz, M. Himly, A. Duschl, M. Dusinska, and I. Lynch, Impact of storage conditions and storage time on silver nanoparticles' physicochemical properties and implications for their biological effects, RSC Adv., 5(2015), No. 102, p. 84172.
|
[20] |
S. Shankar, A. Ahmad, and M. Sastry, Geranium leaf assisted biosynthesis of silver nanoparticles, Biotechnol. Prog., 19(2003), No. 6, p. 1627.
|
[21] |
K.P. Bankura, D. Maity, M.M.R. Mollick, D. Mondal, B. Bhowmick, M.K. Bain, A. Chakraborty, J. Sarkar, K. Acharya, and D. Chattopadhyay, Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium, Carbohydr. Polym., 89(2012), No. 4, p. 1159.
|
[22] |
C. Petit, P. Lixon, and M.P. Pileni, In situ synthesis of silver nanocluster in AOT reverse micelles, J. Phys. Chem., 97(1993), No. 49, p. 12974.
|
[23] |
M. Villanueva-Ibáñez, M.G. Yañez-Cruz, R. Álvarez-García, and M.A. Hernández-Pérez, Aqueous corn husk extract-mediated green synthesis of AgCl and Ag nanoparticles, Mater. Lett., 152(2015), p. 166.
|
[24] |
K. Patel, S. Kapoor, D.P. Dave, and T. Mukherjee, Synthesis of nanosized silver colloids by microwave dielectric heating, J. Chem. Sci., 117(2005), No. 1, p. 53.
|
[25] |
S. Schneider, P. Halbig, H. Grau, and U. Nickel, Reproducible preparation of silver sols with uniform particle size for application in surface-enhanced Raman spectroscopy, Photochem. Photobiol., 60(1994), No. 6, p. 605.
|
[26] |
Y. Xia and N.J. Halas, Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures, MRS Bull., 30(2005), No. 5, p. 338.
|