Cite this article as: |
Jian Ding, Pei-wei Han, Cui-cui Lü, Peng Qian, Shu-feng Ye, and Yun-fa Chen, Utilization of gold-bearing and iron-rich pyrite cinder via a chlorination-volatilization process, Int. J. Miner. Metall. Mater., 24(2017), No. 11, pp. 1241-1250. https://doi.org/10.1007/s12613-017-1516-0 |
Shu-feng Ye E-mail: sfye@ipe.ac.cn
[1] |
T. Li, Y.F. Yin, X.H. Fang, and T.S. Qiu, Technological status of recovering copper, lead, zinc, sulfur from gold cyaniding tailings, Mod. Min.,(2011), No. 4, p. 28.
|
[2] |
C.C. Lv, J. Ding, P. Qian, Q.C. Li, S.F. Ye, and Y.F. Chen, Comprehensive recovery of metals from cyanidation tailing, Miner. Eng., 70(2015), p. 141.
|
[3] |
A.C. Lin, Balance research on harmful element in ironmaking process in Honghe steel, Yunnan Metall., 42(2013), No. 4, p. 39.
|
[4] |
D.G. Tang, Research on pyrite cinder used in pellet production, China Resour. Compr. Util., 24(2006), No. 7, p. 5.
|
[5] |
X.Q. Sun, Z.S. Yao, J. Jin, and Y. Wu, Experimental feasibility study on production of oxidized agglomerate by utilization of SA cinder, Phosphate Compd. Fert., 2005, No. 6, p. 13.
|
[6] |
D.Q. Zhu, T.J. Chun, J. Pan, and Z.Q. Guo, Preparation of oxidised pellets using pyrite cinders as raw material, Ironmaking Steelmaking, 40(2013), No. 6, p. 430.
|
[7] |
B.S. Hu and H. Wang, The transition of occurrence of copper, gold and silver in Tongling pyrite cinder during magnetic roasting and separation, Multipurpose Util. Miner. Resour., 2002, No. 2, p. 16.
|
[8] |
Y.L. Li, W.S. Guan, X.D. Shi, Q. Wang, and S.Q. Li, Research advances in the reclamation of gold and silver from pyrite slag, Appl. Chem. Ind., 38(2009), No. 11, p. 1671.
|
[9] |
J.T. Wei, B.K. Guo, G.Y. Yan, and X.J. Zhen, Study on recovering gold from pyrite cinder by superfine grinding-resin-in-pulp method, Gold, 23(2002), No. 4, p. 34.
|
[10] |
D.M. Gao and C.L. Lv, Study on gold extraction from gold-bearing sulfuric-acid slag by the process of chlorine leaching, Gold Sci. Technol., 13(2005), No. 6, p. 17.
|
[11] |
L.S. Strizhko, R.I. Normurotov and D.B. Kholikulov, Investigations into extracting gold from gold-containing magnesium fraction by chlorination, Russ. J. Non-Ferrous Met., 50(2009), No. 4, p. 348.
|
[12] |
J.K.S. Tee and D.J. Fray, Separation of copper from steel, Ironmaking Steelmaking, 33(2006), No. 1, p. 19.
|
[13] |
F. Santos, E. Brocchi, V. Araújo, and R. Souza, Behavior of Zn and Fe content in electric arc furnace dust as submitted to chlorination methods, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1729.
|
[14] |
J. Ding, J.W. Sun, P. Qian, Z.K. Pan, S.F. Ye, Q.C. Li, C.X. Wang, and Y.F. Chen, Experimental study on recovering valuable metals from pyrite cinder by chloridizing roast, Comput. Appl. Chem., 29(2012), No. 3, p. 255.
|
[15] |
A. Landsberg and C.L. Hoatson, The kinetics and equilibria of the gold-chlorine system, J. Less Common Met., 22(1970), No. 3, p. 327.
|
[16] |
P.G. Jiang, P.F. Wu, Z.B. Wang, Y.B. Yan, and Q.X. Jing, Research progress of chloridizing volatilization, Nonferrous Met. Sci. Eng., 7(2016), No. 6, p. 43.
|
[17] |
T. Guo, X.J. Hu, H. Matsuura, F. Tsukihashi, and G.Z. Zhou, Kinetics of Zn removal from ZnO-Fe2O3-CaCl2 system, ISIJ Int., 50(2010), No. 8, p. 1084.
|
[18] |
T. Guo, X.J. Hu, X.M. Hou, H. Matsuura, F. Tsukihashi, and G.Z. Zhou, Chlorination reaction mechanism between ZnFe2O4 and CaCl2, J. Univ. Sci. Technol. Beijing, 33(2011), No. 4, p. 474.
|
[19] |
L.I. Barbosa, J.A. González, and M. del CarmenRuiz, Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride, Thermochim. Acta, 605(2015), p. 63.
|
[20] |
D.Q. Zhu, D. Chen, J. Pan, and G.L. Zheng, Chlorination behaviors of zinc phases by calcium chloride in high temperature oxidizing-chloridizing roasting, ISIJ Int., 51(2011), No. 11, p. 1773.
|
[21] |
L. Jian, S.M. Wen, C. Yu, D. Liu, S.J. Bai, and D.D. Wu, Process optimization and reaction mechanism of removing copper from an Fe-rich pyrite cinder using chlorination roasting, J. Iron Steel Res. Int., 20(2013), No. 8, p. 20.
|
[22] |
G.Y. Fu, J. Ding, L.Q. Wei, X.M. Zhang, Y. Liu, and S.F. Ye, Study on the corrosion and adhesion behavior of chloridizing metallurgy furnace, Gold Sci. Technol., 23(2015), No. 5, p. 99.
|
[23] |
G. Fraissler, M. Jöller, T. Brunner, and I. Obernberger, Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination, Chem. Eng. Process., 48(2009), No. 1, p. 380.
|
[24] |
X.L. Wang, Ferrous Metallurgy (Ironmaking Section), Metallurgical Industry Press, Beijing, 2013, p. 41.
|
[25] |
T. Jiang, Production Manual of Sintering and Pelletizing, Metallurgical Industry Press, Beijing, 2014, p. 169.
|