Cite this article as: |
Bing Ni, Tao Zhang, Hai-qi Ni, and Zhi-guo Luo, Mechanism and simulation of droplet coalescence in molten steel, Int. J. Miner. Metall. Mater., 24(2017), No. 11, pp. 1251-1259. https://doi.org/10.1007/s12613-017-1517-z |
Tao Zhang E-mail: zhangt1022@gmail.com
[1] |
Q. Li, X.H. Wang, F.X. Huang, J. Wang, and W.J. Wang, Behavior and control of nonmetallic inclusions in X80 pipeline steel during LF-RH secondary refining process, Spec. Steel, 2011, No. 4, p. 26.
|
[2] |
L.F. Guo, Y. Wang, H. Li, and H.T. Ling, Floating properties of agglomerated inclusion in liquid steel, J. Iron Steel Res. Int., 20(2013), No. 7, p. 35.
|
[3] |
L.F. Guo, H. Li, Y. Wang, and H.T. Ling, Applying fractal theory to study agglomeration of solid inclusion particles in liquid steel and floating characteristics, Phys. Exam. Test., 17(2012), No. 17, p. 53.
|
[4] |
F.P. Tang, Z. Li, X.F. Wang, W.S. Liu, and B.W. Chen, Technical investigation on the fine inclusion removal due to the dispersed in-situ phase induced by the composite ball explosion reaction, Iron Steel, 45(2010), No. 8, p. 28.
|
[5] |
X.F. Wang, F.P. Tang, Z. Li, Y. Lin, Y. Zhang, and J. Wang, Technology of inducing dispersed in-situ phase by composite ball explosion reaction, Iron Steel, 49(2014), No. 10, p. 18.
|
[6] |
H. Liu, Z. Qi, and M. Xu, Numerical simulation of fluid flow and interfacial behavior in three-phase argon-stirred ladles with one plug and dual plugs, Steel Res. Int., 82(2011), No. 4, p. 440.
|
[7] |
Y.J. Kwon, J. Zhang, and H.G. Lee, A CFD-based nucleation growth removal model for inclusion behavior in a gas agitated ladle during molten steel deoxidation, ISIJ Int., 48(2008), No. 7, p. 891.
|
[8] |
M. Sommerfeld, Modelling of particle-wall collisions in confined gas-particle flows, Int. J. Multiphase Flow, 18(1992), No. 6, p. 905.
|
[9] |
T. Tanaka, K. Kadono, and Y. Tsuji, Numerical simulation of gas-solid two-phase flow in a vertical pipe:on the effect of particle-to-particle collision, Trans. Jpn. Soc. Mech. Eng. Ser. B, 56(1990), No. 531, p. 3210.
|
[10] |
Y.J. Hao, J.Y. Liu, and Z.L. Yuan, Movement characteristics of droplets and demisting efficiency of mist eliminator, CIESC J., 65(2014), No. 12, p. 4669.
|
[11] |
Z.J. Liu, J.J. Wu, H. Zhen, and X.P. Hu, Numerical simulation on head-on binary collision of gel propellant droplets, Energies, 6(2013), No. 1, p. 204.
|
[12] |
M. Orme, Experiments on droplet collisions, bounce, coalescence and disruption, Prog. Energy Combust. Sci., 23(1997), No. 1, p. 65.
|
[13] |
J. Yan, K. Luo, J.R. Fan, and G. Xiao, Numerical study of inter-particle collision in dilute two-phase jet, J. Chem. Ind. Eng. China, 59(2008), No. 4, p. 866.
|
[14] |
Y. Yu, F.P. Cai, L.X. Zhou, and M. Shi, Second-order moment two-phase turbulence model for dense gas-particle flows, J. Chem. Ind. Eng. China, 56(2005), No. 4, p. 620.
|
[15] |
P. Zhang and C.K. Law, Analysis of head-on droplet collision with large deformation in gaseous medium, Phys. Fluids, 23(2011), art No. 042102.
|
[16] |
J. Zhang, Y. Wu, and E.J. Lavernia, Kinetics of ceramic particulate penetration into spray atomized metallic droplet at variable penetration depth, Acta. Metall. Mater., 42(1994), No. 9, p. 2955.
|
[17] |
J. Qian and C.K. Law, Regimes of coalescence and separation in droplet collision, J. Fluid Mech., 331(1997), p. 59.
|
[18] |
Y. Wu, J.M. Zhang, and E.J. Lavernia, Modeling of the incorporation of ceramic particulates in metallic droplets during spray atomization and coinjection, Metall. Mater. Trans. B, 25(1994), No. 1, p. 135.
|
[19] |
A. Kharicha, M. Wu, A. Ludwig, and E. Karimi-Sibaki, Simulation of the electric signal during the formation and departure of droplets in the electroslag remelting process, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1427.
|
[20] |
N. Nikolopoulos, K.S. Nikas, and G. Bergeles, A numerical investigation of cenral binary collision of droplets, Comput. Fluids, 38(2009), No. 6, p. 1191.
|
[21] |
J. Guo, S.S. Cheng, Z.J. Cheng, and Y.W. Zhang, Effects of collision behavior on Al2O3 based inclusion modification after calcium treatment for aluminium-killed steel, Iron Steel, 48(2013), No. 9, p. 37.
|
[22] |
Y.X. Liao and D. Lucas, A literature review on mechanisms and models for the coalescence process of fluid particles, Chem. Eng. Sci., 65(2010), No. 10, p. 2851.
|
[23] |
K. Wang, S.T. Yi, Q.Q. Zhou, and G.S. Luo, Effect of nano-particles on droplet coalescence in microchannel device, CIESC J., 67(2016), No. 2, p. 469.
|
[24] |
S.Y. Xia and C.B. Hu, Experimental study of collision of liquid Al2O3/Al droplets, J. Propul. Power, 29(2013), No. 1, p. 95.
|
[25] |
C.A. Llanos, S. Garcia-Hernandez, J.A. Ramos-Banderas, J.J. De Barreto, and G. Solorio-Diaz, Multiphase modeling of the fluidynamics of bottom argon bubbling during ladle operations, ISIJ Int., 50(2010), No. 3, p. 396.
|
[26] |
T. Zhang, Z.G. Luo, H. Zhou, B. Ni, and Z.S. Zou, Analysis of two-phase flow and bubbles behavior in a continuous casting mold using a mathematical model considering the interaction of bubbles, ISIJ Int., 56(2016), No. 1, p. 116.
|
[27] |
R.X. Li, Z.H. Liu, Z. He, Y. Chen, and C. Zheng, Direct numerical simulation of inertial particle collision in isotropic turbulence, Chin. J. Theor. Appl. Mech., 38(2006), No. 1, p. 25.
|