留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 1
Jan.  2018
数据统计

分享

计量
  • 文章访问数:  578
  • HTML全文浏览量:  80
  • PDF下载量:  12
  • 被引次数: 0
Li-zi He, Yi-heng Cao, Yi-zhou Zhou, and Jian-zhong Cui, Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 62-72. https://doi.org/10.1007/s12613-018-1547-1
Cite this article as:
Li-zi He, Yi-heng Cao, Yi-zhou Zhou, and Jian-zhong Cui, Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 62-72. https://doi.org/10.1007/s12613-018-1547-1
引用本文 PDF XML SpringerLink
研究论文

Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys

  • 通讯作者:

    Li-zi He    E-mail: helizi@epm.neu.edu.cn

  • Effects of Ag addition on the microstructures, aging characteristics, tensile properties, electrochemical properties, and intergranular corrosion (IGC) properties of Al-1.1Mg-0.8Si-0.9Cu-0.35Mn-0.02Ti alloy were investigated using scanning electronic microscopy and transmission electronic microscopy. The aging process of Al-Mg-Si-Cu alloys was accelerated by the addition of Ag. The strength of peak-aged Al-Mg-Si-Cu alloys was enhanced by Ag addition because of the high density of β"- and L-phase age-hardening precipitates. The corrosion performance of the Al-Mg-Si-Cu alloy is closely related to the aging conditions and is independent of the Ag content. The IGC susceptibility is serious in the peak-aged alloy because of the continuous distribution of Cu-rich Q-phase precipitates along grain boundaries. Ag addition reduces the size of the grain-boundary-precipitate Q phase and the width of the precipitate-free zone and thus results in decreased IGC susceptibility of Al-Mg-Si-Cu alloys.
  • Research Article

    Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys

    + Author Affiliations
    • Effects of Ag addition on the microstructures, aging characteristics, tensile properties, electrochemical properties, and intergranular corrosion (IGC) properties of Al-1.1Mg-0.8Si-0.9Cu-0.35Mn-0.02Ti alloy were investigated using scanning electronic microscopy and transmission electronic microscopy. The aging process of Al-Mg-Si-Cu alloys was accelerated by the addition of Ag. The strength of peak-aged Al-Mg-Si-Cu alloys was enhanced by Ag addition because of the high density of β"- and L-phase age-hardening precipitates. The corrosion performance of the Al-Mg-Si-Cu alloy is closely related to the aging conditions and is independent of the Ag content. The IGC susceptibility is serious in the peak-aged alloy because of the continuous distribution of Cu-rich Q-phase precipitates along grain boundaries. Ag addition reduces the size of the grain-boundary-precipitate Q phase and the width of the precipitate-free zone and thus results in decreased IGC susceptibility of Al-Mg-Si-Cu alloys.
    • loading
    • [1]
      A. Heidarzadeh, M. Emamy, A. Rahimzadeh, R. Soufi, D. Sohrabi Baba Heidary, and Sh. Nasibi, The effect of copper addition on the fluidity and viscosity of an Al-Mg-Si alloy, J. Mater. Eng. Perform., 23(2014), No. 2, p. 469.
      [2]
      M.S. Silva, C. Barbosa, O. Acselrad, and L.C. Pereira, Effect of chemical composition variation on microstructure and mechanical properties of a 6060 aluminum alloy, J. Mater. Eng. Perform., 13(2004), No. 2, p. 129.
      [3]
      J. Chaudhurl, Y.M. Tan, V. Gondhalekar, and K.M. Patni, Comparison of corrosion-fatigue properties of pre-corroded 6013 bare and 2024 bare aluminum alloy sheet materials, J. Mater. Eng. Perform., 3(1994), No. 3, p. 371.
      [4]
      H. Uchida, H. Yoshida, H. Hira, and T. Amano, Development of high strength Al-Mg-Si-Cu alloy with corrosion resistance, Mater. Sci. Forum, 217-222(1996), p. 1753.
      [5]
      F. Delmas, M.J. Casanove, P. Lours, A. Couret, and A. Coujou, Quantitative TEM study of the precipitation microstructure in aluminium alloy Al(MgSiCu) 6056 T, Mater. Sci. Eng. A, 373(2004), No. 1-2, p. 80.
      [6]
      S.C. Bergsma and M.E. Kassner, The new aluminum alloy AA6069, Mater. Sci. Forum, 217-222(1996), p. 1801.
      [7]
      C.H. Liu, X.M. Zhang, J.G. Tang, X.X. Liu, and L. Chen, Effect of copper on precipitation and baking hardening behavior of Al-Mg-Si alloys, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 2289.
      [8]
      K. El-Menshawy, A.W.A. El-Sayed, M.E. El-Bedawy, H.A. Ahmed, and S.M. El-Raghy, Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061, Corros. Sci., 54(2012), No. 1, p. 167.
      [9]
      G. Svenningsen, M.H. Larsen, J.H. Nordlien, and K. Nisancioglu, Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy, Corros. Sci., 48(2006), No. 12, p. 3969.
      [10]
      G. Svenningsen, M.H. Larsen, J.C. Walmsley, J.H. Nordlien, and K. Nisancioglu, Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content, Corros. Sci., 48(2006), No. 6, p. 1528.
      [11]
      G. Svenningsen, M.H. Larsen, J.H. Nordlien, and K. Nisancioglu, Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy, Corros. Sci., 48(2006), No. 1, p. 258.
      [12]
      G. Svenningsen, J.E. Lein, A. Bjørgum, J.H. Nordlien, Y.D. Yu, and K. Nisancioglu, Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys, Corros. Sci., 48(2006), No. 1, p. 226.
      [13]
      I.J. Polmear and M.J. Coupter, Design and development of an experimental wrought aluminum alloy for use at elevated temperatures, Metall. Trans. A, 19(1988), No. 4, p. 1027.
      [14]
      S. Wenner, C.D. Marioara, Q.M. Ramasse, D.M. Kepaptsoglou, F.S. Hage, and R. Holmestad, Atomic-resolution electron energy loss studies of precipitates in an Al-Mg-Si-Cu-Ag alloy, Scripta Mater., 74(2014), p. 92.
      [15]
      J.H. Kim, C.D. Marioara, R. Holmestad, E. Kobayashi, and T. Sato, Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al-Mg-Si alloys, Mater. Sci. Eng. A, 560(2013), p. 154.
      [16]
      J. Nakamura, K. Matsuda, T. Kawabata, T. Sato, Y. Nakamura, and S. Ikeno, Effect of silver addition on the β'-phase in Al-Mg-Si-Ag alloy, Mater. Trans., JIM, 51(2010), No. 2, p. 310.
      [17]
      S. Kuroda and K. Tohma, Effect of Cu and Zn addition on electrochemical properties of Al-Si brazing filler, J. Jpn. Inst. Light Met., 48(1998), No. 9, p. 465.
      [18]
      C. Blanc, Y. Roques, and G. Mankowski, Application of phase shifting interferometric microscopy to studies of the behaviour of coarse intermetallic particles in 6056 aluminium, Corros. Sci., 40(1998), No. 6, p. 1019.
      [19]
      R.A. Jeniski, B. Thanaboonsombut, and T.H. Sanders, The effect of iron and manganese on the recrystallization behavior of hot-rolled and solution-heat-treated aluminum alloy 6013, Metall. Mater. Trans. A, 27(1996), No. 1, p. 19.
      [20]
      A. Nemura, T. Ohno, S. Kamado, Y. Kojima, R. Masuda, and K. Oosumi, Recycling and environmental problem. Effect of remained vanadium on microstructure and various properties of 6061 aluminum alloy, J. Jpn. Inst. Light Met., 46(1996), No. 46, p. 570.
      [21]
      C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort, and R. Holmestad, The effect of Cu on precipitation in Al-Mg-Si alloys, Philos. Mag., 87(2007), No. 23, p. 3385.
      [22]
      M. Torsæter, W. Lefebvre, C.D. Marioara, S.J. Andersen, J.C. Walmsley, and R. Holmestad, Study of intergrown L and Q' precipitates in Al-Mg-Si-Cu alloys, Scripta Mater., 64(2011), p. 817.
      [23]
      D.J. Chakrabarti and D.E. Laughlin, Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Prog. Mater. Sci., 49(2004), No. 3-4, p. 389.
      [24]
      M.H. Jacobs, The structure of the metastable precipitates formed during aging of an Al-Mg-Si alloy, Philos. Mag., 26(1972), No. 1, p. 1.
      [25]
      S. Esmaeili, X. Wang, D.J. Lloyd, and W.J. Poole, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A, 34(2003), No. 3, p. 751.
      [26]
      T.D. Burleigh, E. Ludwiczak, and R.A. Petri, Intergranular corrosion of an aluminum-magnesium-silicon-copper alloy, Corrosion, 51(1995), No. 1, p. 50.
      [27]
      G.S. Frankel, The growth of 2-D pits in thin film aluminum, Corros. Sci., 30(1990), No. 12, p. 1203.
      [28]
      K. Sugimoto, Y. Sawada, and Morioka, Effects of alloying elements on the pitting corrosion of aluminum, Trans. Jpn. Inst. Met., 13(1972), No. 5, p. 345.

    Catalog


    • /

      返回文章
      返回