留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 1
Jan.  2018
数据统计

分享

计量
  • 文章访问数:  617
  • HTML全文浏览量:  119
  • PDF下载量:  18
  • 被引次数: 0
Yu Han, Shuang-yu Liu, Lei Cui, Li Xu, Jian Xie, Xue-Ke Xia, Wen-Kui Hao, Bo Wang, Hui Li,  and Jie Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 88-93. https://doi.org/10.1007/s12613-018-1550-6
Cite this article as:
Yu Han, Shuang-yu Liu, Lei Cui, Li Xu, Jian Xie, Xue-Ke Xia, Wen-Kui Hao, Bo Wang, Hui Li,  and Jie Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 88-93. https://doi.org/10.1007/s12613-018-1550-6
引用本文 PDF XML SpringerLink
研究论文

Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries

  • 通讯作者:

    Jian Xie    E-mail: xiejian1977@zju.edu.cn

  • A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-like morphology and was uniformly distributed on the G/Ni surface. The flower-like Ni3S2 was composed of cross-arrayed nanoflakes with a diameter and a thickness of 1-2 μm and~50 nm, respectively. The free space in the flowers and the thin feature of Ni3S2 buffered the volume changes and relieved mechanical strain during repeated cycling. The intimate contact with the Ni substrate and the fixing effect of graphene maintained the structural stability of the Ni3S2 electrode during cycling. The G/Ni-supported Ni3S2 maintained a reversible capacity of 250 mAh·g-1 after 100 cycles at 50 mA·g-1, demonstrating the good cycling stability as a result of the unique microstructure of this electrode material.
  • Research Article

    Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries

    + Author Affiliations
    • A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-like morphology and was uniformly distributed on the G/Ni surface. The flower-like Ni3S2 was composed of cross-arrayed nanoflakes with a diameter and a thickness of 1-2 μm and~50 nm, respectively. The free space in the flowers and the thin feature of Ni3S2 buffered the volume changes and relieved mechanical strain during repeated cycling. The intimate contact with the Ni substrate and the fixing effect of graphene maintained the structural stability of the Ni3S2 electrode during cycling. The G/Ni-supported Ni3S2 maintained a reversible capacity of 250 mAh·g-1 after 100 cycles at 50 mA·g-1, demonstrating the good cycling stability as a result of the unique microstructure of this electrode material.
    • loading
    • [1]
      S.W. Kim, D.H. Seo, X.H. Ma, G. Ceder, and K. Kang, Electrode materials for rechargeable sodium-ion batteries:Potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2(2012), No. 7, p. 710.
      [2]
      V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, and T. Rojo, Na-ion batteries:recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci., 5(2012), p. 5884.
      [3]
      V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M.H. Han, and T. Rojo, Update on Na-based battery materials. A growing research path, Energy Environ. Sci., 6(2013), No. 8, p. 2312.
      [4]
      M.D. Slater, D. Kim, E. Lee, and C.S. Johnson, Sodium-ion batteries, Adv. Funct. Mater., 23(2013), No. 8, p. 947.
      [5]
      N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Research development on sodium-ion batteries, Chem. Rev., 114(2014), No. 23, p. 11636.
      [6]
      D. Kundu, E. Talaie, V. Duffort, and L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed., 54(2015), No. 11, p. 3431.
      [7]
      B. Dunn, H. Kamath, and J.M. Tarascon, Electrical energy storage for the grid:a battery of choices, Science 334(2011), No. 6058, p. 928.
      [8]
      S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.S. Choi, and K.T. Lee, Charge carriers in rechargeable batteries:Na ions vs. Li ions, Energy Environ. Sci., 6(2013), No. 7, p. 2067.
      [9]
      M.M. Doeff, Y.P. Ma, S.J. Visco, and L.C. De Jonghe, Electrochemical insertion of sodium into carbon, J. Electrochem. Soc., 140(1993), No. 12, p. L169.
      [10]
      R. Alcántara, F.J. Fernández Madrigal, P. Lavela, J.L. Tiradoa, J.M. Jiménez Mateos, C. Gómez de Salazar, R. Stoyanova, and E. Zhecheva, Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells, Carbon, 38(2000), No. 7, p. 1031.
      [11]
      D. Xie, X.H. Xia, Y. Zhong, Y.D. Wang, D.H. Wang, X.L. Wang, and J.P. Tu, Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage, Adv. Energy Mater., 7(2017), No. 3, art. No. 1601804.
      [12]
      H.Y. Kang, Y.C. Liu, K.Z. Cao, Y. Zhao, L.F. Jiao, Y.J. Wang, and H.T. Yuan, Update on anode materials for Na-ion batteries, J. Mater. Chem. A, 3(2015), No. 35, p. 17899.
      [13]
      W. Luo, F. Shen, C. Bommier, H.L. Zhu, X.L. Ji, and L.B. Hu, Na-ion battery anodes:materials and electrochemistry, Acc. Chem. Res., 49(2016), No. 2, p. 231.
      [14]
      S.M. Oh, S.T. Myung, C.S. Yoon, J. Lu, J. Hassoun, B. Scrosati, K. Amine, and Y.K. Sun, Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage, Nano Lett., 14(2014), No. 3, p. 1620.
      [15]
      K. Zhang, Z. Hu, X. Liu, Z.L. Tao, and J. Chen, FeSe2 microspheres as a high-performance anode material for Na-ion batteries, Adv. Mater., 27(2015), No. 21, p. 3305.
      [16]
      H.L. Ye, Y.Y. Wang, F.P. Zhao, W.J. Huang, N. Han, J.H. Zhou, M. Zeng, and Y.G. Li, Iron-based sodium-ion full batteries, J. Mater. Chem. A, 4(2016), No. 5, p. 1754.
      [17]
      Z. Shadike, M.H. Cao, F. Ding, L. Sang, and Z.W. Fu, Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries, Chem. Commun., 51(2015), No. 52, p. 10486.
      [18]
      Y.N. Ko and Y.C. Kang, Co9S8-carbon composite as anode materials with improved Na-storage performance, Carbon, 94(2015), p. 85.
      [19]
      Q.M. Su, G.H. Du, J. Zhang, Y.J. Zhong, B.S. Xu, Y.H. Yang, S. Neupane, and W.Z. Li, In situ transmission electron microscopy observation of electrochemical sodiation of individual Co9S8-filled carbon nanotubes, ACS Nano, 8(2014), No. 4, p. 3620.
      [20]
      Y.C. Du, X.S. Zhu, X.S. Zhou, L.Y. Hu, Z.H. Dai, and J.C. Bao, Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage, J. Mater. Chem. A, 3(2015), p. 6787.
      [21]
      R.M. Sun, Q.L. Wei, Q.D. Li, W. Luo, Q.Y. An, J.Z. Sheng, D. Wang, W. Chen, and L.Q. Mai, Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery, ACS Appl. Mater. Interfaces, 7(2015), No. 37, p. 20902.
      [22]
      C.Q. Shang, S.M. Dong, S.L. Zhang, P. Hu, C.J. Zhang, and G.L. Cui, A Ni3S2-PEDOT monolithic electrode for sodium batteries, Electrochem. Commun., 50(2014), p. 24.
      [23]
      W. Qin, T.Q. Chen, T. Lu, D.H.C. Chua, and L.K. Pan, Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries, J. Power Sources, 302(2016), p. 202.
      [24]
      Z. Hu, Z.Q. Zhu, F.Y. Cheng, K. Zhang, J.B. Wang, C.C. Chen, and J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries, Energy Environ. Sci., 8(2015), No. 4, p. 1309.
      [25]
      Y.X. Wang, J.P. Yang, S.L. Chou, H.K. Liu, W.X. Zhang, D.Y. Zhao, and S.X. Dou, Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries, Nat. Commun., 6(2015), p. 8689.
      [26]
      X.J. Xu, S.M. Ji, M.Z. Gu, and J. Liu, In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 37, p. 20957.
      [27]
      S.H. Choi, Y.N. Ko, J.K. Lee, and Y.C. Kang, 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties, Adv. Funct. Mater., 25(2015), No. 12, p. 1780.
      [28]
      Y.Y. Lu, Q. Zhao, N. Zhang, K.X. Lei, F.J. Li, and J. Chen, Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres, Adv. Funct. Mater., 26(2016), No. 6, p. 911.
      [29]
      D. Xie, X.H. Xia, W.J. Tang, Y. Zhong, Y.D. Wang, D.H. Wang, X.L.Wang, and J.P. Tu, Novel carbon channels from loofah sponge for construction of metal sulfide/carbon composites with robust electrochemical energy storage, J. Mater. Chem. A, 5(2017), No. 16, p. 7578.
      [30]
      D. Xie, X.H. Xia, Y.D. Wang, D.H. Wang, Y. Zhong, W.J. Tang, X.L.Wang, and J.P. Tu, Nitrogen-doped carbon embedded MoS2 microspheres as advanced anodes for lithiumand sodium-ion batteries, Chem. Eur. J., 22(2016), p. 11617.
      [31]
      S.H. Choi and Y.C. Kang, Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres, Nanoscale, 7(2015), No. 9, p. 3965.
      [32]
      C.B. Zhu, P. Kopold, W.H. Li, P.A. van Aken J. Maier, and Y. Yu, Engineering nanostructured electrode materials for high performance sodium ion batteries:a case study of a 3D porous interconnected WS2/C nanocomposite, J. Mater. Chem. A, 3(2015), No. 41, p. 20487.
      [33]
      S.H. Choi and Y.C. Kang, Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage, Nanoscale, 8(2016), No. 7, p. 4209.
      [34]
      Y.C. Lu, C.Z. Ma, J. Alvarado, N. Dimov, Y.S. Meng, and S. Okada, Improved electrochemical performance of tinsulfide anodes for sodium-ion batteries, J. Mater. Chem. A, 3(2015), No. 33, p. 16971.
      [35]
      L.C. Zeng, W.C. Zeng, Y. Jiang, X. Wei, W.H. Li, C.L. Yang, Y.W. Zhu, and Y. Yu, A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries, Adv. Energy Mater., 5(2015), No. 4, art. No. 1401377.
      [36]
      J. Zhang, Y.X. Yin, and Y.G. Guo, High-capacity Te anode confined in microporous carbon for long-life Na-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 50, p. 27838.
      [37]
      S.P. Wu, R.Y. Ge, M.J. Lu, R. Xu, and Z. Zhang, Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery, Nano Energy, 15(2015), p. 379.
      [38]
      W.M. Tian, S.M. Li, B. Wang, X. Chen, J.H. Liu, and M. Yu, Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), p. 723.
      [39]
      Y.G. Shi, Y. Hao, D. Wang, J.C. Zhang, P. Zhang, X.F. Shi, D. Han, Z. Chai, and J.D. Yan, Effects of the flow rate of hydrogen on the growth of graphene, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 102.
      [40]
      S.Y. Liu, Y.G. Zhu, J. Xie, Y. Huo, H.Y. Yang, T.J. Zhu, G.S. Cao, X.B. Zhao, and S.C. Zhang, Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries, Adv. Energy Mater., 4(2014), No. 9, art. No. 1301960.
      [41]
      X.F. Li, A. Dhanabalan, K. Bechtold, and C.L. Wang, Binder-free porous core-shell structured Ni/NiO configuration for application of high performance lithium ion batteries, Electrochem. Commun., 12(2010), No. 9, p. 1222.
      [42]
      O.O. Balayeva, A.A. Azizov, M.B. Muradov, A.M. Maharramov, G.M. Eyvazova, R.M. Alosmanov, Z.Q. Mamiyevc, and Z.A. Aghamaliyev, β-NiS and Ni3S4 nanostructures:Fabrication and characterization, Mater. Res. Bull., 75(2016), p. 155.
      [43]
      C.W. Su, J.M. Li, W. Yang, and J.M. Guo, Electrodeposition of Ni3S2/Ni composites as high-performance cathodes for lithium batteries, J. Phys. Chem. C, 118(2014), No. 2, p. 767.
      [44]
      A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97(2006), No. 18, art. No. 187401.

    Catalog


    • /

      返回文章
      返回