Cite this article as:

Monideepa Mukherjee, Sumit Tiwari, and Basudev Bhattacharya, Evaluation of factors affecting the edge formability of two hot rolled multiphase steels, Int. J. Miner. Metall. Mater., 25(2018), No. 2, pp.199-215. https://dx.doi.org/10.1007/s12613-018-1563-1
Monideepa Mukherjee, Sumit Tiwari, and Basudev Bhattacharya, Evaluation of factors affecting the edge formability of two hot rolled multiphase steels, Int. J. Miner. Metall. Mater., 25(2018), No. 2, pp.199-215. https://dx.doi.org/10.1007/s12613-018-1563-1
引用本文 PDF XML SpringerLink

Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

摘要: In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

 

Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

Abstract: In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

 

/

返回文章
返回