Cite this article as: |
Dong-liang Li, Gui-qin Fu, Miao-yong Zhu, Qing Li, and Cheng-xiang Yin, Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 325-338. https://doi.org/10.1007/s12613-018-1576-9 |
Miao-yong Zhu E-mail: myzhu@mail.neu.edu.cn
[1] |
P. Albrecht and T.T. Hall Jr, Atmospheric corrosion resistance of structural steels, J. Mater. Civ. Eng., 15(2003), No. 1, p. 2.
|
[2] |
Y.Q. Liu and A.R. Chen, Development and design essentials of weathering steel bridges, Bridge Constr., 5(2003), p. 39.
|
[3] |
D.J. Yang and Z.S. Shen, Metal Corrosion Study, Metallurgical Industry Press, Beijing, 1999, p. 208.
|
[4] |
C.N. Cao, Material Corrosion in Natural Environment of China, Chemical Industry Press, Beijing, 2005, p. 2.
|
[5] |
C.L. Li, Y.T. Ma, Y. Li, and F.H. Wang, EIS monitoring study of atmospheric corrosion under variable relative humidity, Corros. Sci., 52(2010), No. 11, p. 3677.
|
[6] |
S.T. Wang, S.W. Yang, K.W. Gao, and X.L. He, Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning, Int. J. Miner. Metall. Mater., 16(2009), No. 1, p. 58.
|
[7] |
W.H. Zhang, S.W. Yang, J. Guo, Z.Y. Liu, and X.L. He, Incubation and development of corrosion in microstructures of low alloy steels under a thin liquid film of NaCl aqueous solution, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 748.
|
[8] |
A.P. Yadav, A. Nishikata, and T. Tsuru, Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness, Corros. Sci., 46(2004), No. 1, p. 169.
|
[9] |
U.R. Evans and C.A.J. Taylor, Mechanism of atmospheric rusting, Corros. Sci., 12(1972), No. 3, p. 227.
|
[10] |
H.E. Townsend, Effects of alloying elements on the corrosion of steel in industrial atmospheres, Corrosion, 57(2001), No. 6, p. 497.
|
[11] |
H. NaitÔ, Y. Hosoi, H. Okada, and K. Inouye, Effect of alloying elements in steel on the corrosion behavior in neutral solutions:fundamental studies of the atmospheric corrosion of low-alloy steels, Corros. Eng., 16(1967), No. 5, p. 191.
|
[12] |
G.L. Cao, G.M. Li, S. Chen, W.S. Chang, and X.Q. Chen, Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels, Acta Metall. Sin., 46(2010), No. 6, p. 748.
|
[13] |
A. Nishikata, Y. Yamashita, H. Katayama, T. Tsuru, A. Usami, K. Tanabe, and H. Mabuchi, An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition, Corros. Sci., 37(1995), No. 12, p. 2059.
|
[14] |
T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments, Corros. Sci., 42(2000), No. 9, p. 1611.
|
[15] |
T. Nishimura and T. Kodama, Analysis of chemical state for alloying elements in iron rust, Tetsu-to-Hagane, 88(2002), No. 6, p. 320.
|
[16] |
T. Nishimura and T. Kodama, Clarification of chemical state for alloying elements in iron rust using a binary-phase potential-pH diagram and physical analyses, Corros. Sci., 45(2003), No. 5, p. 1073.
|
[17] |
A. Nishikata, F. Suzuki, and T. Tsuru, Corrosion monitoring of nickel-containing steels in marine atmospheric environment, Corros. Sci., 47(2005), No. 10, p. 2578.
|
[18] |
H. Kihira, S. Ito, S. Mizoguchi, T. Murata, A. Usami, and K. Tanabe, Creation of alloy design concept for anti air-born salinity weathering steel, Zairyo-to-Kankyo, 49(2000), No. 1, p. 30.
|
[19] |
A. Nishikata, Q.J. Zhu, and E. Tada, Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method, Corros. Sci., 87(2014), p. 80.
|
[20] |
J.L. Gu, R. Yan, H. Jun, and Y. Fumio, Effect of Ni content on atmospheric corrosion of low alloy steels, Corros. Prot., 31(2010), No. 1, p. 5.
|
[21] |
X.Q. Cheng, Z. Jin, M. Liu, and X.G. Li, Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres, Corros. Sci., 115(2017), p. 135.
|
[22] |
X.Q. Cheng, Y.W. Tian, X.G. Li, and C. Zhou, Corrosion behavior of nickel-containing weathering steel in simulated marine atmospheric environment, Mater. Corros., 65(2014), No. 10, p. 1033.
|
[23] |
R. Liu, X.P. Chen, X.D. Wang, Q.N. Shi, F.Y. Mi, and Y. Li, Effect of nickel on corrosion resistance of weathering steels in a simulated marine atmosphere environment, Corros. Sci. Prot. Technol., 28(2016), No. 2, p. 122.
|
[24] |
X.H. Chen, J.H. Dong, E.H. Han, and W. Ke, Effect of Ni on the ion-selectivity of rust layer on low alloy steel, Mater. Lett., 61(2007), No. 19-20, p. 4050.
|
[25] |
X.L. Gao, G.Q. Fu, and M.Y. Zhu, Effect of nickel on ion-selective property of rust formed on low-alloying weathering steel, Acta Metall. Sin. Engl. Lett., 25(2012), No. 4, p. 295.
|
[26] |
I. Diaz, H. Cano, D. de la Fuente, B. Chico, J.M. Vega, and M. Morcillo, Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity, Corros. Sci., 76(2013), p. 348.
|
[27] |
H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. de la Fuente, Characterization of corrosion products formed on Ni 2.4 wt%-Cu 0.5 wt%-Cr 0.5 wt% weathering steel exposed in marine atmospheres, Corros. Sci., 87(2014), p. 438.
|
[28] |
H.S. Karayannis and G. Patermarakis, Effect of the Cl- and SO2-4 ions on the selective orientation and structure of Ni electrodeposits, Electrochim. Acta, 40(1995), No. 9, p. 1079.
|
[29] |
K. Noda, T. Nishimura, H. Masuda, and T. Kodama, Ion selective permeability of the rust layer on Fe-Co and Fe-Ni low alloy steel, J. Jpn. Inst. Met., 63(1999), No. 9, p. 1133.
|
[30] |
F. Corvo, T. Perez, L.R. Dzib, Y. Martin, A. Castañeda, E. Gonzalez, and J. Perez, Outdoor-indoor corrosion of metals in tropical coastal atmospheres, Corros. Sci., 50(2008), No. 1, p. 220.
|
[31] |
F. Corvo, T. Pérez, Y. Martin, J. Reyes, L.R. Dzib, J. González-Sánchez, and A. Castañeda, Time of wetness in tropical climate:considerations on the estimation of TOW according to ISO 9223 standard, Corros. Sci., 50(2008), No. 1, p. 206.
|
[32] |
J.G. Castaño, C.A. Botero, A.H. Restrepo, E.A. Agudelo, E. Correa, and F. Echeverría, Atmospheric corrosion of carbon steel in Colombia, Corros. Sci., 52(2010), No. 1, p. 216.
|
[33] |
Y.T. Ma, Y. Li, and F.H. Wang, The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment, Corros. Sci., 52(2010), No. 5, p. 1796.
|
[34] |
A.M. Guo and D.H. Zou, Current situation of bridge steel and development of weathering bridge steel in China, China Steel, 2008, No. 9, p. 18.
|
[35] |
A.M. Guo, H.X. Dong, and D.H. Zou, Study on corrosion resistance of high strength weathering bridge steel produced by WISCO,[in] The China's Annual Conference of Steel Rolling Production Technology, Dalian, 2008.
|
[36] |
M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. de la Fuente, Atmospheric corrosion data of weathering steels:A review, Corros. Sci., 77(2013), p. 6.
|
[37] |
K. Asami and M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years, Corros. Sci., 45(2003), No. 11, p. 2671.
|
[38] |
Ministry of Railways, PRC, TB/T 2375-1993, Wet/Dry Cyclic Corrosion Test of Weathering Steel Using for Railway, China Railway Press, Beijing, 1993.
|
[39] |
E. Burger, M. Fénart, S. Perrin, D. Neff, and P. Dillmann, Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion, Corros. Sci., 53(2011), No. 6, p. 2122.
|
[40] |
W.J. Chen, L. Hao, J.H. Dong, W. Ke, and H.L. Wen, Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere, Acta Metall. Sin., 50(2014), No. 7, p. 802.
|
[41] |
L. Cui, S.W. Yang, S.T. Wang, K.W. Gao, W. Liu, and X.L. He, Corrosion behavior and corrosion products of a low carbon bainite steel in three kinds of typical environments, J. Univ. Sci. Technol. Beijing, 31(2009), No. 3, p. 306.
|
[42] |
C.N. Cao, Principles of Electrochemistry of Corrosion, 3rd ed., Chemical Industry Press, Beijing, 2008, p. 177.
|
[43] |
Y. Wang, S.L. Jiang, Y.G. Zheng, W. Ke, W.H. Sun, and J.Q. Wang, Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions, Corros. Sci., 63(2012), p. 159.
|
[44] |
Q. Qv, C.W. Yan, W. Bai, L. Zhang, Y. Wan, and C.N. Cao, Role of NaCl in the atmospheric corrosion of A3 steel, J. Chin. Soc. Corros. Prot., 23(2003), No. 3, p. 160.
|
[45] |
D.L. Li, G.Q. Fu, M.Y. Zhu, and H.J. Zhang, Effect of SO2 pollution on corrosion behavior of Q235B steel in hot and humid marine atmosphere, Iron Steel, 52(2017), No. 1, p. 64.
|
[46] |
C. Lin, Q. Zhao, Y.E. Liu, and J.N. Liang, Evolution of corrosion products of 20 carbon steel in atmosphere containing SO2, Acta Metall. Sin., 46(2010), No. 3, p. 358.
|
Int. J. Miner. Metall. Mater., 2018, 25 (11) : 1275-1285
Hai-tao Wang, Zi-xiang Wang, Lian-zheng Wang, Jing-qin Wang, Yan-cai Zhu. Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO2 contact materials[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(11): 1275-1285. doi: 10.1007/s12613-018-1680-x
Int. J. Miner. Metall. Mater., 2017, 24 (8) : 931-936
Chang-hong Chen, Ke-qin Feng, Yu Zhou, Hong-ling Zhou. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(8): 931-936. doi: 10.1007/s12613-017-1480-8
Int. J. Miner. Metall. Mater., 2017, 24 (12) : 1438-1447
Song Chen, De-gui Zhu. Influence of sintering temperature on the phases and photoelectric characteristics of BiOCl/ZnO composite powders[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(12): 1438-1447. doi: 10.1007/s12613-017-1537-8