Cite this article as: |
Guo-hua Zhang, He-qiang Chang, Lu Wang, and Kuo-chih Chou, Study on reduction of MoS2 powders with activated carbon to produce Mo2C under vacuum conditions, Int. J. Miner. Metall. Mater., 25(2018), No. 4, pp. 405-412. https://doi.org/10.1007/s12613-018-1585-8 |
Guo-hua Zhang E-mail: ghzhang_ustb@163.com
[1] |
J. Haines, J.M. Léger, C. Chateau, and J.E. Lowther, Experimental and theoretical investigation of Mo2C at high pressure, J. Phys. Condens. Matter, 13(2001), No. 11, p. 2447.
|
[2] |
W.F. Chen, J.T. Muckerman, and E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts, Chem. Commun., 49(2013), No. 79, p. 8896.
|
[3] |
X.Y. Li, D. Ma, L.M. Chen, and X.H. Bao, Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction, Catal. Lett., 116(2007), No. 1, p. 63.
|
[4] |
X.R. Wang, M.F. Yan, and H.T. Chen, First-principle calculations of hardness and melting point of Mo2C, J. Mater. Sci. Technol., 25(2009), No. 3, p. 419.
|
[5] |
E.J. Pavlina, J.G. Speer, and C.J. Van Tyne, Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron, Scripta Mater., 66(2012), No. 5, p. 243.
|
[6] |
Z.N. Zhou and K.M. Wu, Molybdenum carbide precipitation in an Fe-C-Mo alloy under a high magnetic field, Scripta Mater., 61(2009), No. 7, p. 670.
|
[7] |
S. Yamasaki and H.K.D.H. Bhadeshia, Modelling and characterisation of Mo2C precipitation and cementite dissolution during tempering of Fe-C-Mo martensitic steel, Mater. Sci. Technol., 19(2003), No. 6, p. 723.
|
[8] |
H.M. Wang, X.H. Wang, M.H. Zhang, X.Y. Du, W. Li, and K.Y. Tao, Synthesis of bulk and supported molybdenum carbide by a single-step thermal carburization method, Chem. Mater., 19(2007), No. 7, p. 1801.
|
[9] |
J.G. Choi, J.R. Brenner, and L.T. Thompson, Pyridine hydrodenitrogenation over molybdenum carbide catalysts, J. Catal., 154(1995), No. 1, p. 33.
|
[10] |
T. Christofoletti, J.M. Assaf, and E.M. Assaf, Methane steam reforming on supported and non-supported molybdenum carbides, Chem. Eng. J., 106(2005), No. 2, p. 97.
|
[11] |
Z.H. Liang, P.L. Ying, and C. Li, Nanostructured β-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material, Chem. Mater., 14(2002), No. 7, p. 3148.
|
[12] |
T.C. Xiao, A.P.E. York, H. Al-Megren, C.V. Williams, H.T. Wang, and M.L.H. Green, Preparation and characterisation of bimetallic cobalt and molybdenum carbides, J. Catal., 202(2001), No. 1, p. 100.
|
[13] |
G. Vitale, M.L. Frauwallner, E. Hernandez, C.E. Scott, and P. Pereira-Almao, Low temperature synthesis of cubic molybdenum carbide catalysts via pressure induced crystallographic orientation of MoO3 precursor, Appl. Catal. A, 400(2011), No. 1-2, p. 221.
|
[14] |
J. Dang, G.H. Zhang, L. Wang, K.C. Chou, and P.C. Pistorius, Study on reduction of MoO2 powders with CO to produce Mo2C, J. Am. Ceram. Soc., 99(2016), No. 3, p. 819.
|
[15] |
G. Vitale, H. Guzmán, M.L. Frauwallner, C.E. Scott, and P. Pereira-Almao, Synthesis of nanocrystalline molybdenum carbide materials and their characterization, Catal. Today, 250(2015), p. 123.
|
[16] |
J.A. Nelson and M.J. Wagner, High surface area Mo2C and WC prepared by alkalide reduction, Chem. Mater., 14(2002), No. 5, p. 1639.
|
[17] |
O.N. Baklanova, A.V. Vasilevich, A.V. Lavrenov, V.A. Drozdov, I.V. Muromtsev, A.B. Arbuzov, M.V. Trenikhin, S.S. Sigaeva, V.L. Temerev, O.V. Gorbunova, V.A. Likholobov, A.I. Nizovskii, and A.V. Kalinkin, Molybdenum carbide synthesized by mechanical activation an inert medium, J. Alloys Compd., 698(2017), p. 1018.
|
[18] |
H. Preiss, L.M. Berger, and D. Schultze, Studies on the carbothermal preparation of titanium carbide from different gel precursors, J. Eur. Ceram. Soc., 19(1999), No. 2, p. 195.
|
[19] |
R. Padilla, M.C. Ruiz, and H.Y. Sohn, Reduction of molybdenite with carbon in the presence of lime, Metall. Mater. Trans. B, 28(1997), No. 2, p. 265.
|
[20] |
P.M. Prasad, T.R. Mankhand, P.S.P. Rao, S.N. Singh, and A.J.K. Prasad, Kinetics of the direct synthesis of molycarbide by reduction-carburization of molybdenite in the presence of lime, Metall. Mater. Trans. B, 33(2002), No. 3, p. 345.
|
[21] |
S.G. Najafabadi, M.H Abbasi, and A. Saidi, Thermodynamic investigation of lime-enhanced molybdenite reduction using methane-containing gases, Thermochim. Acta, 503-504(2010), p. 46.
|
[22] |
S. Ghasemi, M.H. Abbasi, A. Saidi, J.Y. Kim, and J.S. Lee, Sulfur-emission-free process of molybdenum carbide synthesis by lime-enhanced molybdenum disulfide reduction with methane, Ind. Eng. Chem. Res., 50(2011), No. 23, p. 13340.
|
[23] |
L. Wang, G.H. Zhang, J. Dang, and K.C. Chou, Oxidation roasting of molybdenite concentrate, Trans. Nonferrous Met. Soc. China, 25(2015), No. 12, p. 4167.
|
[24] |
T. Ressler, R.E. Jentoft, and J. Wienold, In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3, J. Phys. Chem. B, 104(2000), No. 27, p. 6360.
|
[25] |
J.M. Laferty, D.L. Howe, and R.F. Sebenik, Production of Molybdenum Oxide from Ammonium Molybdate Solutions, U.S. Patent, Appl. 4273745.6, 1981.
|
[26] |
W.A. May, Fluid Bed Reduction to Produce Flowable Molybdenum Metal, U.S. Patent, Appl. 5330557.7, 1994.
|
[27] |
J. Dang, G.H. Zhang, K.C. Chou, R.G. Reddy, Y. He, and Y.J. Sun, Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2, Int. J. Refract. Met. Hard Mater., 41(2013), p. 216.
|
[28] |
J. Dang, G.H. Zhang, and K.C. Chou, Study on kinetics of hydrogen reduction of MoO2, Int. J. Refract. Met. Hard Mater., 41(2013), p. 356.
|
[29] |
D.A. Porter, K.E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, CRC Press, Florida, 2009, p. 131.
|
[30] |
C.S. Smith, Grain shapes and other metallurgical applications of topology, Metallogr. Microstruct. Anal., 4(2015), No. 6, p. 543.
|