Cite this article as: |
Hui Xu, Jian-hao Chen, Shu-bin Ren, Xin-bo He, and Xuan-hui Qu, Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 25(2018), No. 4, pp. 459-471. https://doi.org/10.1007/s12613-018-1592-9 |
Shu-bin Ren E-mail: sbren@ustb.edu.cn
[1] |
G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, and J. Lian, Large-area freestanding graphene paper for superior thermal management, Adv. Mater., 26(2014), No. 26, p. 4521.
|
[2] |
R. Prieto, J.M. Molina, J. Narciso, and E. Louis, Fabrication and properties of graphite flakes/metal composites for thermal management applications, Scripta Mater., 59(2008), No. 1, p. 11.
|
[3] |
C. Zhou, G. Ji, Z. Chen, M.L. Wang, A. Addad, D. Schryvers, and H.W. Wang, Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications, Mater. Des., 63(2014), p. 719.
|
[4] |
W.J. Li, Y. Liu, and G.H. Wu, Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting, Carbon, 95(2015), p. 545.
|
[5] |
I. Firkowska, A. Boden, B. Boerner, and S. Reich, The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites, Nano Lett., 15(2015), No. 7, p. 4745.
|
[6] |
J.H. Chen, S.B. Ren, X.B He, and X.H. Qu, Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering, Carbon, 121(2017), p. 25.
|
[7] |
L. Weber and R. Tavangar, Diamond-based metal matrix composites for thermal management:potential and limits, Adv. Mater. Res., 59(2009), p. 111.
|
[8] |
J.C. Lloyd, E. Neubauer, J. Barcena, and W.J. Clegg, Effect of titanium on copper-titanium/carbon nanofibre composite materials, Compos. Sci. Technol., 70(2010), No. 16, p. 2284.
|
[9] |
J.S. He, H.L. Zhang, Y. Zhang, Y.M. Zhao, and X.T. Wang, Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method, Phys. Status Solidi A, 211(2014), No. 3, p. 587.
|
[10] |
J.W. Li, X.T. Wang, Y. Qiao, Y. Zhang, Z.B. He, and H.L. Zhang, High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites, Scripta Mater., 109(2015), p. 72.
|
[11] |
K. Chu, C.C. Jia, H. Guo, and W.S. Li, On the thermal conductivity of Cu-Zr/diamond composites, Mater. Des., 45(2013), p. 36.
|
[12] |
Y.H. Sun, L.K. He, C. Zhang, Q.N. Meng, B.C. Liu, K. Gao, M. Wen, and W.T. Zheng, Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating, Sci. Rep., 7(2017), No.1, p. 10727.
|
[13] |
S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, and L.Y. Ma, Mo2C coating on diamond:Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 402(2017), p. 372.
|
[14] |
W. Cui, H. Xu, J.H. Chen, S.B. Ren, X.B. He, and X.H. Qu, Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 716.
|
[15] |
J.Q. Gao, Y.T. Wu, L. Liu, B. Shen, and W.B. Hu, Crystallization temperature of amorphous electroless nickel-phosphorus alloys, Mater. Lett., 59(2005), No. 13, p. 1665.
|
[16] |
Á. Révész, J. Lendvai, J. Lóránth, J. Pádár, and I. Bakonyi, Nanocrystallization studies of an electroless plated Ni-P amorphous alloy, J. Electrochem. Soc., 148(2001), No. 11, p. C715.
|
[17] |
T. Rabizadeh, S.R. Allahkaram, and A. Zarebidaki, An investigation on effects of heat treatment on corrosion properties of Ni-P electroless nano-coatings, Mater. Des., 31(2010), No. 7, p. 3174.
|
[18] |
S.H. Park and D.N. Lee, A study on the microstructure and phase transformation of electroless nickel deposits, J. Mater. Sci., 23(1988), No. 5, p. 1643.
|
[19] |
K.H. Hur, J.H. Jeong, and D.N. Lee, Microstructures and crystallization of electroless Ni-P deposits, J. Mater. Sci., 25(1990), No.5, p. 2573.
|
[20] |
Z. Guo, K.G. Keong, and W. Sha, Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating, J. Alloys Compd., 358(2003), No. 1-2, p. 112.
|
[21] |
C.Y. Ho, M.W. Ackerman, K.Y. Wu, S.G. Oh, and T.N. Havill, Thermal conductivity of ten selected binary alloy systems, J. Phys. Chem. Ref. Data, 7(1978), No. 3, p. 959.
|
[22] |
S. Divinski, J. Ribbe, G. Schmitz, and C Herzig, Grain boundary diffusion and segregation of Ni in Cu, Acta Mater., 55(2007), No. 10, p. 3337.
|
[23] |
H. Shimizu, M. Ono, N. Koyama, and Y. Ishida, Sputter-enhanced diffusion phenomena in Cu/Ni alloys at elevated temperatures, J. Appl. Phys., 53(1982), No. 4, p. 3044.
|
[24] |
E.B. Modin, E.V. Pustovalov, A.N. Fedorets, A.V. Dubinets, B.N. Grudin, V.S. Plotnikov, and S.S. Grabchikov, Atomic structure and crystallization processes of amorphous (Co, Ni)-P metallic alloy, J. Alloys Compd., 641(2015), p. 139.
|
[25] |
K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, and K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper, Science, 321(2008), No. 5892, p. 1066.
|
[26] |
C.W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter, The effective thermal conductivity of particular composites with interfacial thermal resistance, J. Appl. Phys., 81(1997), No. 10, p. 6692.
|
[27] |
C.W. Nan, G. Liu, Y.H. Lin, and M. Li, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 85(2004), No. 16, p. 3549.
|
[28] |
Y.B. Zhu, H. Bai, C. Xue, R. Zhou, Q.F. Xu, P.F. Tao, C. Wang, J.W. Wang, and N. Jiang, Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface, RSC Adv., 100(2016), No.6, p. 98190.
|
[29] |
R. Prieto, J.M. Molina, J. Narciso, and E. Louis, Thermal conductivity of graphite flakes-SiC particles/metal composites, Compos. Part A, 42(2011), No. 12, p. 1970.
|
[30] |
E.T. Swartz and R.O. Pohl, Thermal boundary resistance, Rev. Mod. Phys., 61(1989), p. 605.
|
[31] |
J.M. Molina, R. Prieto, J. Narciso, and E. Louis, The effect of porosity on the thermal conductivity of Al-12 wt.% Si/SiC composites, Scripta Mater., 60(2009), No. 7, p. 582.
|
[32] |
D.V. Louzguine-luzgin, A.D. Setyawan, H. Kato, and A. Inoue, Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys, Appl. Phys. Lett., 88(2006), No. 25, article No.251902.
|
[33] |
K. Jagannadham, Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets, Metall. Mater. Trans. B, 43(2012), No. 2, p. 316.
|
[34] |
K. Lu, J.T. Wang, and W.D. Wei, Thermal expansion and specific heat capacity of nanocrystalline Ni-P alloy, Scr. Metall. Mater., 25(1991), No. 3, p. 619.
|