Cite this article as:

Kichakeswari Tudu, Sagar Pal, and N. R. Mandre, Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer, Int. J. Miner. Metall. Mater., 25(2018), No. 5, pp.498-504. https://dx.doi.org/10.1007/s12613-018-1596-5
Kichakeswari Tudu, Sagar Pal, and N. R. Mandre, Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer, Int. J. Miner. Metall. Mater., 25(2018), No. 5, pp.498-504. https://dx.doi.org/10.1007/s12613-018-1596-5
引用本文 PDF XML SpringerLink

Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer

摘要: This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin (AP), poly acrylic acid (PAA), and a graft copolymer (AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction (XRD) and electron probe microanalysis (EPMA) techniques.

 

Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer

Abstract: This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin (AP), poly acrylic acid (PAA), and a graft copolymer (AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction (XRD) and electron probe microanalysis (EPMA) techniques.

 

/

返回文章
返回