Cite this article as: |
Ze-an Zhou, Wan-tang Fu, Zhe Zhu, Bin Li, Zhong-ping Shi, and Shu-hua Sun, Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon CrMnN stainless steel through quenching and partitioning treatment, Int. J. Miner. Metall. Mater., 25(2018), No. 5, pp. 547-553. https://doi.org/10.1007/s12613-018-1601-z |
Shu-hua Sun E-mail: sshh@ysu.edu.cn
[1] |
K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R, 65(2009), No. 4-6, p. 39.
|
[2] |
Z.H. Wang, Q. Meng, M.G. Qu, Z.A. Zhou, B. Wang, and W.T. Fu, Effect of strain rate on hot ductility behavior of a high nitrogen Cr–Mn austenitic steel, Metall. Mater. Trans. A, 47(2016), No. 3, p. 1268.
|
[3] |
W.T. Fu, Y.B. Yang, T.F. Jing, Y.Z. Zheng, and M. Yao, The resistance to cavitation erosion of CrMnN stainless steels, J. Mater. Eng. Perform., 7(1998), No. 6, p. 801.
|
[4] |
R.H. Zhang, Z.A. Zhou, M.W. Guo, J.J. Qi, S.H. Sun, and W.T. Fu, Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1043.
|
[5] |
J.F. Santa, J.A. Blanco, J.E. Giraldo, and A. Toro, Cavitation erosion of martensitic and austenitic stainless steel welded coatings, Wear, 271(2011), No. 9-10, p. 1445.
|
[6] |
Z. Cvijović and G. Radenković, Microstructure and pitting corrosion resistance of annealed duplex stainless steel, Corros. Sci., 48(2006), No. 12, p. 3887.
|
[7] |
P.D. Bilmes, M. Solari, and C.L. Llorente, Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals, Mater. Charact., 46(2001), No. 4, p. 285.
|
[8] |
B.K. Sreedhar, S.K. Albert, and A.B. Pandit, Cavitation erosion testing of austenitic stainless steel (316L) in liquid sodium, Wear, 328-329(2015), p. 436.
|
[9] |
W. Liu, Y.G. Zheng, C.S. Liu, Z.M. Yao, and W. Ke, Cavitation erosion behavior of Cr-Mn-N stainless steels in comparison with 0Cr13Ni5Mo stainless steel, Wear, 254(2003), No. 7-8, p. 713.
|
[10] |
C.T. Kwok, H.C. Man, and F.T. Cheng, Cavitation erosion and pitting corrosion behaviour of laser surface-melted martensitic stainless steel UNS S42000, Surf. Coat. Technol., 126(2000), No. 2-3, p. 238.
|
[11] |
S. Lee, S.J. Lee, and B.C.D. Cooman, Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning, Scripta Mater., 65(2011), No. 3, p. 225.
|
[12] |
J. Speer, D.K. Matlock, B.C.D. Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003), No. 9, p. 2611.
|
[13] |
J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci., 8(2004), No. 3-4, p. 219.
|
[14] |
A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E.D. Moor, Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment, Acta Mater., 56(2008), No. 1, p. 16.
|
[15] |
W.S. Li, H.Y. Gao, Z.Y. Li, H. Nakashima, S. Hata, and W.H. Tian, Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process, Int. J. Miner. Metall. Mater., 23(2016), No. 3, p. 303.
|
[16] |
W.S. Li, H.Y. Gao, H. Nakashima, S. Hata, and W.H. Tian, Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 906.
|
[17] |
Y. Li, G.Y. Xiao, L.B. Chen, and Y.P. Lu, Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel, Int. J. Miner. Metall. Mater., 21(2014), No. 12, p. 1196.
|
[18] |
T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada, and S. Takaki, Quenching and partitioning treatment of a low-carbon martensitic stainless steel, Mater. Sci. Eng. A, 532(2012), p. 585.
|
[19] |
J. Mola and B.C.D. Cooman, Quenching and partitioning (Q&P) processing of martensitic stainless steels, Metall. Mater. Trans. A, 44(2013), No. 2, p. 946.
|
[20] |
W.T. Fu, Z. Wang, T.F. Jing, and Y.Z. Zheng, Thermal stability of undercooled Austenite in a CrMnN dual-phase stainless steel, Heat Treat. Met., 1997, No. 11, p. 9.
|
[21] |
Z. Li and D. Wu, Effects of hot deformation and subsequent austempering on the mechanical properties of Si–Mn TRIP steels, ISIJ Int., 46(2006), No. 1, p. 121.
|
[22] |
M. Wendler, C. Ullrich, M. Hauser, L. Krüger, O. Volkova, A.Weiß, and J. Mola, Quenching and partitioning (Q&P) processing of fully austenitic stainless steels, Acta Mater., 133(2017), p. 346.
|
[23] |
F. Hajyakbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia, Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel, Acta Mater., 104(2016), p. 72.
|
[24] |
E.J. Seo, L. Cho, and B.C.D. Cooman, Application of quenching and partitioning (Q&P) processing to press hardening steel, Metall. Mater. Trans. A, 45(2014), No. 9, p. 4022.
|