Cite this article as:

Chao Gu, Yan-ping Bao, Peng Gan, Min Wang, and Jin-shan He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp.623-629. https://dx.doi.org/10.1007/s12613-018-1609-4
Chao Gu, Yan-ping Bao, Peng Gan, Min Wang, and Jin-shan He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp.623-629. https://dx.doi.org/10.1007/s12613-018-1609-4
引用本文 PDF XML SpringerLink

Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime

摘要: This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue (VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions (Al2O3, MgO-Al2O3) and the matrix, while other cracks originated from the interior of inclusions (TiN, MnS). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.

 

Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime

Abstract: This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue (VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions (Al2O3, MgO-Al2O3) and the matrix, while other cracks originated from the interior of inclusions (TiN, MnS). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.

 

/

返回文章
返回