Cite this article as: |
Takehito Hiraki, Yuichi Maruyama, Yuta Suzuki, Satoshi Itoh, and Tetsuya Nagasaka, Up-grading of natural ilmenite ore by combining oxidation and acid leaching, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 729-736. https://doi.org/10.1007/s12613-018-1620-9 |
Takehito Hiraki E-mail: hiraki@material.tohoku.ac.jp
[1] |
U.S. Geological Survey, Mineral Commodity Summaries 2017, U.S. Geological Survey, Reston, Virginia, 2017.
|
[2] |
M. Pourabdoli, S. Raygan, H. Abdizadeh, and K. Hanaei, Production of high titania slag by electro-slag crucible melting (ESCM) process, Int. J. Miner. Process., 78(2006), No. 3, p. 175.
|
[3] |
K.K. Sahu, T.C. Alex, D. Mishra, and A. Agrawal, An overview on the production of pigment grade titania from titania-rich slag, Waste Manage. Res., 24(2006), No. 1, p. 74.
|
[4] |
D. Filippou and G. Hudon, Iron removal and recovery in the titanium dioxide feedstock and pigment industries, JOM, 61(2009), No. 10, p. 36.
|
[5] |
S. Samal, P.S. Mukherjee, and A.K. Ray, Comparative study on energy consumption and yield by various thermal plasma routes for production of titania slag, Plasma Chem. Plasma Process., 30(2010), No. 3, p. 413.
|
[6] |
M.J. Gázquez, J.P. Bolívar, R. Garcia-Tenorio, and F. Vaca, A review of the production cycle of titanium dioxide pigment, Mater. Sci. Appl., 5(2014), No. 7, p. 441.
|
[7] |
S. Middlemas, Z.Z. Fang, and P. Fan, Life cycle assessment comparison of emerging and traditional titanium dioxide manufacturing processes, J. Cleaner Prod., 89(2015). p. 137.
|
[8] |
J.H. Zietsman and P.C. Pistorius, Process mechanisms in ilmenite smelting, J. South Afr. Inst. Min. Metall., 105(2005), No. 4, p. 229.
|
[9] |
C. Murty, R. Upadhyay, and S. Asokan, Electro smelting of ilmenite for production of TiO2 slag-potential of India as a global player, [in] Proceedings of INFACON XI, New Delhi, 2007, p. 18.
|
[10] |
R.G. Becher, R.G. Canning, B.A. Goodheart, and S. Uusna, A new process for upgrading ilmenitic mineral sands, Proc. Aust. Inst. Miner. Metall., 21(1965), p. 21.
|
[11] |
Benilite Corp. of America, Beneficiation of titaniferous ores, U.S. Patent, Appl. 3825419, 1974.
|
[12] |
D.B. Rao and M. Rigaud, Kinetics of the oxidation of ilmenite, Oxid. Met., 9(1975), No. 1, p. 99.
|
[13] |
S.K. Gupta, V. Rajakumar, and P. Grieveson, Phase transformations during heating of ilmenite concentrates, Metall. Trans. B, 22(1991), No. 5, p. 711.
|
[14] |
G.Q. Zhang and O. Ostrovski, Effect of peroxidation and sintering on properties of ilmenite concentrates, Int. J. Miner. Process., 64(2002), No. 4, p. 201.
|
[15] |
S. Itoh, S. Sato, J. Ono, H. Okada, and T. Nagasaka, Feasibility study of the new rutile extraction process from natural ilmenite ore based on the oxidation reaction, Metall. Mater. Trans. B, 37(2006), No. 6, p. 979.
|
[16] |
R. Vásquez and A. Molina, Effects of thermal peroxidation on reductive leaching of ilmenite, Miner. Eng., 39(2012), p. 99.
|
[17] |
W. Xiao, X.G. Lu, X.L. Zuo, X.M. Wei, and W.Z. Ding, Phase transitions, micro-morphology and its oxidation mechanism in oxidation of ilmenite (FeTiO3) powder, Trans. Nonferrous Met. Soc. China, 23(2013), No. 8, p. 2439.
|
[18] |
J.B. Zhang, G.Y. Zhang, Q.S. Zhu, C. Lei, Z.H. Xie, and H.Z. Li, Morphological changes and reduction mechanism for the weak reduction of the preoxidized Panzhihua ilmenite, Metall. Mater. Trans. B, 45(2014), No. 3, p. 914.
|
[19] |
Y. Chen, Low-temperature oxidation of ilmenite (FeTiO3) induced by high energy ball milling at room temperature, J. Alloys Compd., 257(1997), No. 1-2, p. 156.
|
[20] |
O. Levenspiel, Chemical Reaction Engineering, 2nd Ed., Wiley, New York, 1972, p. 361.
|
[21] |
M.D. Pritzker, Shrinking-core model for systems with facile heterogeneous and homogeneous reactions, Chem. Eng. Sci., 51(1996), No. 14, p. 3631.
|