摘要:
Electrochemical measurements were conducted to study the electrochemical behavior of gold (Au) and its commonly associated minerals in alkaline thiourea solutions. The results indicated that without addition of any stabilizer, selective dissolution of Au from stibnite and pyrite was only possible at relatively low thiourea concentrations. As Na
2SiO
3 was added, pyrite started to become active and an oxidation peak appeared; the oxidation peaks of arsenopyrite and chalcocite appeared earlier than that of Au. The chalcocite peak shifted in the positive direction and the peak current increased. Stibnite did not show an oxidation peak and its current was nearly zero. Adding Na
2SiO
3 favored the selective dissolution of Au when its minerals were associated with chalcocite and stibnite. At pH 12, the Au anode dissolution peak current increased with stabilizer concentration. At 0.38 and 0.42 V and for Na
2SiO
3 concentration below 0.09 M, the current density continuously increased with Na
2SiO
3 concentration. The Na
2SiO
3 concentration had to be adequate to stabilize thiourea. When the potential was higher than 0.42 V, the surface of the Au electrode started to passivate. With an additional increase in potential, the presence of Na
2SiO
3 could not stop the inevitable decomposition of thiourea.