留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 7
Jul.  2018
数据统计

分享

计量
  • 文章访问数:  578
  • HTML全文浏览量:  90
  • PDF下载量:  15
  • 被引次数: 0
Ze-long Wang, Zhen-tai Zheng, Li-bing Zhao, Yun-feng Lei, and Kun Yang, Microstructure evolution and nucleation mechanism of Inconel 601H alloy welds by vibration-assisted GTAW, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 788-799. https://doi.org/10.1007/s12613-018-1627-2
Cite this article as:
Ze-long Wang, Zhen-tai Zheng, Li-bing Zhao, Yun-feng Lei, and Kun Yang, Microstructure evolution and nucleation mechanism of Inconel 601H alloy welds by vibration-assisted GTAW, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 788-799. https://doi.org/10.1007/s12613-018-1627-2
引用本文 PDF XML SpringerLink
研究论文

Microstructure evolution and nucleation mechanism of Inconel 601H alloy welds by vibration-assisted GTAW

  • 通讯作者:

    Zhen-tai Zheng    E-mail: zzt@hebut.edu.cn

  • Nickel-based alloys exhibit excellent high-temperature strength and oxidation resistance; however, because of coarse grains and severe segregation in their welding joints, these alloys exhibit increased susceptibility to hot cracking. In this paper, to improve the hot-cracking resistance and mechanical properties of nickel-based alloy welded joints, sodium thiosulfate was used to simulate crystallization, enabling the nucleation mechanism under mechanical vibration to be investigated. On the basis of the results, the grain refinement mechanism during the gas tungsten arc welding (GTAW) of Inconel 601H alloy under various vibration modes and parameters was investigated. Compared with the GTAW process, the low-frequency mechanical vibration processes resulted in substantial grain refinement effects in the welds; thus, a higher hardness distribution was also achieved under the vibration conditions. In addition, the γ' phase exhibited a dispersed distribution and segregation was improved in the welded joints with vibration assistance. The results demonstrated that the generation of free crystals caused by vibration in the nucleation stage was the main mechanism of grain refinement. Also, fine equiaxed grains and a dispersed γ' phase were found to improve the grain-boundary strength and reduce the segregation, contributing to preventing the initiation of welding hot cracking in nickel-based alloys.
  • Research Article

    Microstructure evolution and nucleation mechanism of Inconel 601H alloy welds by vibration-assisted GTAW

    + Author Affiliations
    • Nickel-based alloys exhibit excellent high-temperature strength and oxidation resistance; however, because of coarse grains and severe segregation in their welding joints, these alloys exhibit increased susceptibility to hot cracking. In this paper, to improve the hot-cracking resistance and mechanical properties of nickel-based alloy welded joints, sodium thiosulfate was used to simulate crystallization, enabling the nucleation mechanism under mechanical vibration to be investigated. On the basis of the results, the grain refinement mechanism during the gas tungsten arc welding (GTAW) of Inconel 601H alloy under various vibration modes and parameters was investigated. Compared with the GTAW process, the low-frequency mechanical vibration processes resulted in substantial grain refinement effects in the welds; thus, a higher hardness distribution was also achieved under the vibration conditions. In addition, the γ' phase exhibited a dispersed distribution and segregation was improved in the welded joints with vibration assistance. The results demonstrated that the generation of free crystals caused by vibration in the nucleation stage was the main mechanism of grain refinement. Also, fine equiaxed grains and a dispersed γ' phase were found to improve the grain-boundary strength and reduce the segregation, contributing to preventing the initiation of welding hot cracking in nickel-based alloys.
    • loading
    • [1]
      J.C. Lippold, S.D Kiser, and J.N. Dupont, Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons,New Jersey, 2009, p. 100.
      [2]
      Y. Sharir, J. Pelleg, and A. Grill, Effect of arc vibration and current pulses on microstructure and mechanical properties of TIG tantalum welds, Met. Technol., 5(1978), No. 1, p. 190.
      [3]
      B.B. Wei, Unidirectional dendritic solidification under longitudinal resonant vibration, Acta Metall. Mater., 40(1992), No. 10, p. 2739.
      [4]
      Y. Cui, C.L. Xu, and Q.Y. Han, Microstructure improvement in weld metal using ultrasonic vibrations, Adv. Eng. Mater., 9(2010), No. 3, p. 161.
      [5]
      S.P. Tewari and A. Shanker, Effects of longitudinal vibration on tensile properties of weldments, Weld. J., 73(1994), No. 11, p. 272.
      [6]
      A.S.M.Y. Munsi, A.J. Waddell, and C.A. Walker, Modification of welding stresses by flexural vibration during welding, Sci. Technol. Weld. Joining, 6(2001), No. 3, p. 133.
      [7]
      T. Watanabe, M. Shiroki, A. Yanagisawa, and T. Sasaki, Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration, J. Mater. Process. Technol., 210(2010), No. 12, p. 1646.
      [8]
      C.W. Kuo, C.M. Lin, G.H. Lai, Y.C. Chen, Y.T. Chang, and W.T. Wu, Characterization and mechanism of 304 stainless steel vibration welding, Mater. Trans., 48(2007), No. 9, p. 2319.
      [9]
      B.P. Pearce and H.W. Kerr, Grain refinement in magnetically stirred GTA welds of aluminum alloys, Metall. Mater. Trans. B, 12(1981), No. 3, p. 479.
      [10]
      X.B. Liu, F.B. Qiao, L.J. Guo, and X.E. Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 164.
      [11]
      L. Shi, C.S. Wu, and X.C. Liu, Modeling the effects of ultrasonic vibration on friction stir welding, J. Mater. Process. Technol., 222(2015), p. 91.
      [12]
      W.L. Dai, Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6, Mater. Lett., 57(2000), No. 16-17, p. 2447.
      [13]
      X.C. Liu and C.S. Wu, Material flow in ultrasonic vibration enhanced friction stir welding, J. Mater. Process. Technol., 225(2015), p. 32.
      [14]
      X.C. Liu and C.S. Wu, Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding, Mater. Des., 90(2016), p. 350.
      [15]
      S. Kou and Y. Le, Improving weld quality by low frequency arc oscillation, Weld. J., 1985, p. 51.
      [16]
      W.T. Wu, Influence of vibration frequency on solidification of weldments, Scripta Mater., 42(2000), No. 7, p. 661.
      [17]
      T. Yuan, Z. Luo, and S. Kou, Grain refining of magnesium welds by arc oscillation, Acta Mater., 116(2016), p. 166.
      [18]
      R.H. Mathiesen, L. Arnberg, P. Bleuet, and A. Somogyi, Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-Ray video microscopy, Metall. Mater. Trans. A, 37(2006), No. 8, p. 2515.
      [19]
      D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, and L. Katgerman, In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy, Acta Mater., 55(2007), No. 13, p. 4287.
      [20]
      A. Hellawell, S. Liu, and S.Z. Lu, Dendrite fragmentation and the effects of fluid flow in castings, JOM, 49(1997), No. 3, p. 18.
      [21]
      T. Yuan, Z. Luo, and S. Kou, Mechanism of grain refining in AZ91 Mg welds by arc oscillation, Sci. Technol. Weld. Joining, 22(2017), No. 2, p. 97.
      [22]
      J.R. Welty, C.E. Wicks, R.E. Wilson, and G.L. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer, 5th Ed., John Wiley & Sons, New Jersey, 2007, p. 144.
      [23]
      L.X. Zhuang, X.Y. Yin, and H.Y. Ma, Fluid Mechanics, University of Science and Technology of China Press, HeFei, 1991, p. 321.
      [24]
      H. Schlichting and K. Gersten, Boundary-Layer Theory, McGraw-Hill Book Company, New York, 1979, p. 24.
      [25]
      J. Campbell, Effects of vibration during solidification, Int. Metall. Rev., 26(1981), No. 1, p. 71.
      [26]
      S. Kou, Welding Metallurgy, 2nd Ed., John Wiley & Sons, New Jersey, 2003, p. 170.
      [27]
      S.S. Ao, Zhen Luo, P. Shan, and W.D. Liu, Microstructure of inconel 601 nickel-based superalloy laser welded joint, Chin. J. Nonferrous Met., 25(2015), No. 8, p. 2099.
      [28]
      A.R.P. Singh, S. Nag, J.Y. Hwang, G.B. Viswanathan, J. Tiley, R. Srinivasan, H.L. Fraser, and R. Banerjee, Influence of cooling rate on the development of multiple generations of γ' precipitates in a commercial nickel base superalloy, Mater. Charact., 62(2011), No. 9, p. 878.
      [29]
      O.A. Ojo and M.C. Chaturvedi, On the role of liquated γ' precipitates in weld heat affected zone microfissuring of a nickel-based superalloy, Mater. Sci. Eng. A, 403(2005), No. 1-2, p. 77.

    Catalog


    • /

      返回文章
      返回