Ze-long Wang, Zhen-tai Zheng, Li-bing Zhao, Yun-feng Lei, and Kun Yang, Microstructure evolution and nucleation mechanism of Inconel 601H alloy welds by vibration-assisted GTAW, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp.788-799. https://dx.doi.org/10.1007/s12613-018-1627-2 |
J.C. Lippold, S.D Kiser, and J.N. Dupont, Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons,New Jersey, 2009, p. 100. |
Y. Sharir, J. Pelleg, and A. Grill, Effect of arc vibration and current pulses on microstructure and mechanical properties of TIG tantalum welds, Met. Technol., 5(1978), No. 1, p. 190. |
B.B. Wei, Unidirectional dendritic solidification under longitudinal resonant vibration, Acta Metall. Mater., 40(1992), No. 10, p. 2739. |
Y. Cui, C.L. Xu, and Q.Y. Han, Microstructure improvement in weld metal using ultrasonic vibrations, Adv. Eng. Mater., 9(2010), No. 3, p. 161. |
S.P. Tewari and A. Shanker, Effects of longitudinal vibration on tensile properties of weldments, Weld. J., 73(1994), No. 11, p. 272. |
A.S.M.Y. Munsi, A.J. Waddell, and C.A. Walker, Modification of welding stresses by flexural vibration during welding, Sci. Technol. Weld. Joining, 6(2001), No. 3, p. 133. |
T. Watanabe, M. Shiroki, A. Yanagisawa, and T. Sasaki, Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration, J. Mater. Process. Technol., 210(2010), No. 12, p. 1646. |
C.W. Kuo, C.M. Lin, G.H. Lai, Y.C. Chen, Y.T. Chang, and W.T. Wu, Characterization and mechanism of 304 stainless steel vibration welding, Mater. Trans., 48(2007), No. 9, p. 2319. |
B.P. Pearce and H.W. Kerr, Grain refinement in magnetically stirred GTA welds of aluminum alloys, Metall. Mater. Trans. B, 12(1981), No. 3, p. 479. |
X.B. Liu, F.B. Qiao, L.J. Guo, and X.E. Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 164. |
L. Shi, C.S. Wu, and X.C. Liu, Modeling the effects of ultrasonic vibration on friction stir welding, J. Mater. Process. Technol., 222(2015), p. 91. |
W.L. Dai, Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6, Mater. Lett., 57(2000), No. 16-17, p. 2447. |
X.C. Liu and C.S. Wu, Material flow in ultrasonic vibration enhanced friction stir welding, J. Mater. Process. Technol., 225(2015), p. 32. |
X.C. Liu and C.S. Wu, Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding, Mater. Des., 90(2016), p. 350. |
S. Kou and Y. Le, Improving weld quality by low frequency arc oscillation, Weld. J., 1985, p. 51. |
W.T. Wu, Influence of vibration frequency on solidification of weldments, Scripta Mater., 42(2000), No. 7, p. 661. |
T. Yuan, Z. Luo, and S. Kou, Grain refining of magnesium welds by arc oscillation, Acta Mater., 116(2016), p. 166. |
R.H. Mathiesen, L. Arnberg, P. Bleuet, and A. Somogyi, Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-Ray video microscopy, Metall. Mater. Trans. A, 37(2006), No. 8, p. 2515. |
D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, and L. Katgerman, In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy, Acta Mater., 55(2007), No. 13, p. 4287. |
A. Hellawell, S. Liu, and S.Z. Lu, Dendrite fragmentation and the effects of fluid flow in castings, JOM, 49(1997), No. 3, p. 18. |
T. Yuan, Z. Luo, and S. Kou, Mechanism of grain refining in AZ91 Mg welds by arc oscillation, Sci. Technol. Weld. Joining, 22(2017), No. 2, p. 97. |
J.R. Welty, C.E. Wicks, R.E. Wilson, and G.L. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer, 5th Ed., John Wiley & Sons, New Jersey, 2007, p. 144. |
L.X. Zhuang, X.Y. Yin, and H.Y. Ma, Fluid Mechanics, University of Science and Technology of China Press, HeFei, 1991, p. 321. |
H. Schlichting and K. Gersten, Boundary-Layer Theory, McGraw-Hill Book Company, New York, 1979, p. 24. |
J. Campbell, Effects of vibration during solidification, Int. Metall. Rev., 26(1981), No. 1, p. 71. |
S. Kou, Welding Metallurgy, 2nd Ed., John Wiley & Sons, New Jersey, 2003, p. 170. |
S.S. Ao, Zhen Luo, P. Shan, and W.D. Liu, Microstructure of inconel 601 nickel-based superalloy laser welded joint, Chin. J. Nonferrous Met., 25(2015), No. 8, p. 2099. |
A.R.P. Singh, S. Nag, J.Y. Hwang, G.B. Viswanathan, J. Tiley, R. Srinivasan, H.L. Fraser, and R. Banerjee, Influence of cooling rate on the development of multiple generations of γ' precipitates in a commercial nickel base superalloy, Mater. Charact., 62(2011), No. 9, p. 878. |
O.A. Ojo and M.C. Chaturvedi, On the role of liquated γ' precipitates in weld heat affected zone microfissuring of a nickel-based superalloy, Mater. Sci. Eng. A, 403(2005), No. 1-2, p. 77. |
Qi Sun, Yibo Liu, Qinghua Zhang, et al. A new method for refinement of Ti-6Al-4 V prior-β grain structure in the alternating magnetic field assisted narrow gap gas tungsten arc welding (AMF-GTAW) via filler wire oscillation. Journal of Materials Processing Technology, 2024, 327: 118376.
![]() | |
Rajeev Ranjan, Sanjay Kumar Jha. Optimization of welding parameters and microstructure analysis of low frequency vibration assisted SMAW butt welded joints. International Journal on Interactive Design and Manufacturing (IJIDeM), 2024, 18(3): 1687.
![]() | |
Zongli Yi, Jiguo Shan, Yue Zhao, et al. Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys. International Journal of Minerals, Metallurgy and Materials, 2024, 31(5): 1072.
![]() |