留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 9
Sep.  2018
数据统计

分享

计量
  • 文章访问数:  567
  • HTML全文浏览量:  84
  • PDF下载量:  21
  • 被引次数: 0
Le-ping Wang, Gang Chen, Qi-xin Shen, Guo-min Li, Shi-you Guan, and Bing Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp. 1027-1034. https://doi.org/10.1007/s12613-018-1653-0
Cite this article as:
Le-ping Wang, Gang Chen, Qi-xin Shen, Guo-min Li, Shi-you Guan, and Bing Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp. 1027-1034. https://doi.org/10.1007/s12613-018-1653-0
引用本文 PDF XML SpringerLink
研究论文

Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries

  • 通讯作者:

    Bing Li    E-mail: bingli@ecust.edu.cn

  • SnCo alloy nanowires were successfully electrodeposited from SnCl2-CoCl2-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid without a template. The nanowires were obtained from the molar ratio of 5:40:60 for SnCl2:CoCl2:EMIC at -0.55 V and showed a minimum diameter of about 50 nm and lengths of over 20 μm. The as-fabricated SnCo nanowires were about 70 nm in diameter and featured a Sn/Co weight ratio of 3.85:1, when used as an anode for a Li-ion battery, they presented respective specific capacities of 687 and 678 mAh·g-1 after the first charge and discharge cycle and maintained capacities of about 654 mAh·g-1 after 60 cycles and 539 mAh·g-1 after 80 cycles at a current density of 300 mA·g-1. Both the nanowire structure and presence of elemental Co helped buffer large volume changes in the Sn anode during charging and discharging to a certain extent, thereby improving the cycling performance of the Sn anode.
  • Research Article

    Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries

    + Author Affiliations
    • SnCo alloy nanowires were successfully electrodeposited from SnCl2-CoCl2-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid without a template. The nanowires were obtained from the molar ratio of 5:40:60 for SnCl2:CoCl2:EMIC at -0.55 V and showed a minimum diameter of about 50 nm and lengths of over 20 μm. The as-fabricated SnCo nanowires were about 70 nm in diameter and featured a Sn/Co weight ratio of 3.85:1, when used as an anode for a Li-ion battery, they presented respective specific capacities of 687 and 678 mAh·g-1 after the first charge and discharge cycle and maintained capacities of about 654 mAh·g-1 after 60 cycles and 539 mAh·g-1 after 80 cycles at a current density of 300 mA·g-1. Both the nanowire structure and presence of elemental Co helped buffer large volume changes in the Sn anode during charging and discharging to a certain extent, thereby improving the cycling performance of the Sn anode.
    • loading
    • [1]
      J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), p. 359.
      [2]
      T. Li, J.Y. Yang, and S.G. Lu, Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 19(2012), No. 8, p. 752.
      [3]
      T. Huang, Y. Yao, Z. Wei, Z. Liu, and A.S. Yu, Sn-Co-artificial graphite composite as anode maNo. 1, p. 476.
      [4]
      R. Yang, J. Huang, W. Zhao, W.Z. Lai, X.Z. Zhang, J. Zheng, and X.G. Li, Bubble assisted synthesis of Sn-Sb-Cu alloy hollow nanostructures and their improved lithium storage properties, J. Power Sources, 195(2010), No. 19, p. 6811.
      [5]
      M.J. Lindsay, G.X. Wang, and H.K. Liu, Al-based anode materials for Li-ion batteries, J. Power Sources, 119(2003), p. 84.
      [6]
      T. Huang, Y. Yao, Z. Wei, Z. Liu, and A.S. Yu, Sn-Co-artificial graphite composite as anode material for rechargeable lithium batteries, Electrochim. Acta, 56(2010), No. 1, p. 476.
      [7]
      D.H. Nam, R.H. Kim, C.L. Lee, and H. Kwon, Highly reversible Sn-Co alloy anode using porous Cu foam substrate for Li-ion batteries, J. Electrochem. Soc., 159(2012), No. 11, p. A1822.
      [8]
      J. Hassoun, S. Panero, G. Mulas, and B. Scrosati. An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries, J. Power Sources, 171(2007), No. 2, p. 928.
      [9]
      J. Hassoun, S. Panero, P. Simon, P.L. Taberna, and B. Scrosati, High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries, Adv. Mater., 19(2007), No. 12, p. 1632.
      [10]
      N. Tamura, M. Fujimoto, M. Kamino, and S. Fujitani, Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries, Electrochim. Acta, 49(2004), No. 12, p. 1949.
      [11]
      J.Z. Wang, N. Du, H. Zhang, J.X. Yu, and D.R. Yang, Cu-Sn core-shell nanowires arrays as three-dimensional electrodes for lithium-ion batteries, J. Phys. Chem. C, 115(2011), No. 47, p. 23620.
      [12]
      J. Yi, Y.L. Liu, Y. Wang, X.P. Li, S.J. Hu, and W.S. Li, Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances, Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 1058.
      [13]
      G. Ferrara, L. Damen, C. Arbizzani, R. Inguanta, S. Piazza, C. Sunseri, and M. Mastragostino, SnCo nanowire array as negative electrode for lithium-ion batteries, J. Power Sources, 196(2011), No. 3, p. 1469.
      [14]
      M. Tian, W. Wang, S.H. Lee, Y.C. Lee, and R.G. Yang, Enhancing Ni-Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces, J. Power Sources, 196(2011), No. 23, p. 10207.
      [15]
      C.J. Su, Y.T. Hsieh, C.C. Chen, and I.W. Sun, Electrodeposition of aluminum wires from the Lewis acidic AlCl3/trimethylamine hydrochloride ionic liquid without using a template, Electrochem. Commun., 34(2013), p. 170.
      [16]
      J. Szymczak, S. Legeai, S. Diliberto, S. Migot, N. Stein, C. Boulanger, G. Chatel, and M. Draye, Template-free electrodeposition of tellurium nanostructures in a room-temperature ionic liquid, Electrochem. Commun., 24(2012), p. 57.
      [17]
      Y.Q. Chen, H. Wang, and B. Li, Electrodeposition of SmCo alloy nanowires with a large length-diameter ratio from SmCl3-CoCl2-1-ethyl-3-methylimidazolium chloride ionic liquid without template, RSC Adv., 5(2015), No. 49, p. 39620.
      [18]
      G. Chen, Y.Q. Chen, Q.J. Guo, H. Wang, and B. Li, Template-free electrodeposition of AlFe alloy nanowires from a room-temperature ionic liquid as an anode material for Li-ion batteries, Faraday Discuss., 190(2016), p. 97.
      [19]
      Y.T. Hsieh and I.W. Sun, Electrochemical growth of hierarchical CuSn nanobrushes from an ionic liquid, Electrochem. Commun., 13(2011), No. 12, p. 1510.
      [20]
      S.I. Lee, S. Yoon, C.M. Park, J.M. Lee, H. Kim, D. Im, S.G. Doo, and H.J. Sohn, Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anode for Li-ion batteries, Electrochim. Acta, 54(2009), No. 2, p. 364.
      [21]
      J.C. He, H.L. Zhao, M.W. Wang, and X.D. Jia, Preparation and characterization of Co-Sn-C anodes for lithium-ion batteries, Mater. Sci. Eng. B, 171(2010), No. 1-3, p. 35.
      [22]
      M.Z. Xue and Z.W. Fu, Electrochemical reactions of lithium with transition metal stannides, Solid State Ionics, 177(2006), No. 17-18, p. 1501.

    Catalog


    • /

      返回文章
      返回