Cite this article as:

You Zhou, Yu-he Zhang, Jun-sheng Ma, Ming-peng Yu, and Hong Qiu, Structural and electrical properties of HCl-polyaniline-Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp.1329-1334. https://dx.doi.org/10.1007/s12613-018-1686-4
You Zhou, Yu-he Zhang, Jun-sheng Ma, Ming-peng Yu, and Hong Qiu, Structural and electrical properties of HCl-polyaniline-Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp.1329-1334. https://dx.doi.org/10.1007/s12613-018-1686-4
引用本文 PDF XML SpringerLink

Structural and electrical properties of HCl-polyaniline-Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder

摘要: Ag nanoparticles were sputter-deposited on ammonium persulfate ((NH4)2S2O8) powder to obtain (NH4)2S2O8-Ag powder, which was used to synthesize the HCl-doped polyaniline-Ag (HCl-PANI-Ag) composite via a polymerization procedure. The Ag nanoparticles were dispersed in the HCl-PANI matrix, and their sizes mainly ranged from 3 to 6 nm. The Ag nanoparticles did not affect the structure of emeraldine salt in the composite, and they increased the ordered crystalline regions in the HCl-PANI matrix. The HCl-PANI-Ag composite had a conductivity of (6.8 ±0.1) S/cm, which is about four times larger than that of the HCl-PANI. The charge transport mechanism in the composite is explained by the three-dimensional Mott variable-range hopping (3D-Mott-VRH).

 

Structural and electrical properties of HCl-polyaniline-Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder

Abstract: Ag nanoparticles were sputter-deposited on ammonium persulfate ((NH4)2S2O8) powder to obtain (NH4)2S2O8-Ag powder, which was used to synthesize the HCl-doped polyaniline-Ag (HCl-PANI-Ag) composite via a polymerization procedure. The Ag nanoparticles were dispersed in the HCl-PANI matrix, and their sizes mainly ranged from 3 to 6 nm. The Ag nanoparticles did not affect the structure of emeraldine salt in the composite, and they increased the ordered crystalline regions in the HCl-PANI matrix. The HCl-PANI-Ag composite had a conductivity of (6.8 ±0.1) S/cm, which is about four times larger than that of the HCl-PANI. The charge transport mechanism in the composite is explained by the three-dimensional Mott variable-range hopping (3D-Mott-VRH).

 

/

返回文章
返回