Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition

Labani Mustafi, M. M. Rahman, Mohammad Nur E Alam Al Nasim, Mohammad Asaduzzaman Chowdhury, M. H. Monir

分享

计量
  • 文章访问数:  614
  • HTML全文浏览量:  126
  • PDF下载量:  15
  • 被引次数: 6

目录

Cite this article as:

Labani Mustafi, M. M. Rahman, Mohammad Nur E Alam Al Nasim, Mohammad Asaduzzaman Chowdhury, and M. H. Monir, Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp.1335-1343. https://dx.doi.org/10.1007/s12613-018-1687-3
Labani Mustafi, M. M. Rahman, Mohammad Nur E Alam Al Nasim, Mohammad Asaduzzaman Chowdhury, and M. H. Monir, Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp.1335-1343. https://dx.doi.org/10.1007/s12613-018-1687-3
引用本文 PDF XML SpringerLink
研究论文

Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition

    通信作者:

    Mohammad Nur E Alam Al Nasim E-mail: s3612596@student.rmit.edu.au

A systematic investigation was carried out to observe the deposition rate of a diamond-like carbon (DLC) coating on two stainless steel substrates by chemical vapor deposition (CVD). The objective of this research is to study the deposition behavior of the DLC coating and its tribological properties in different combinations of methane (CH4) and nitrogen, which were used as precursor gases. The results reveal that the deposition rate increases with increasing CH4 content up to 50vol%. The hardness of the DLC-deposited layer also increases while the friction coefficient decreases with increasing CH4 gas content up to 50% in the precursor gas mixture.

 

Research Article

Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition

Author Affilications
  • Received: 12 March 2018; Revised: 04 June 2018; Accepted: 10 June 2018;
A systematic investigation was carried out to observe the deposition rate of a diamond-like carbon (DLC) coating on two stainless steel substrates by chemical vapor deposition (CVD). The objective of this research is to study the deposition behavior of the DLC coating and its tribological properties in different combinations of methane (CH4) and nitrogen, which were used as precursor gases. The results reveal that the deposition rate increases with increasing CH4 content up to 50vol%. The hardness of the DLC-deposited layer also increases while the friction coefficient decreases with increasing CH4 gas content up to 50% in the precursor gas mixture.

 

  • K.L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci., 48(2003), No. 2, p. 57.

    L.H. Lai, S.E. Chiou, H.C. Hsueh, and S.T. Shiue, Effects of propane/nitrogen mixtures on thermal chemical vapor deposition rates and microstructures of carbon films, ECS J. Solid State Sci. Technol., 2(2013), No. 11, p. M44.

    R.H. Lee, L.H. Lai, and S.T. Shiue, Effects of different acetylene/nitrogen ratios on characteristics of carbon coatings on optical fibers prepared by thermal chemical vapor deposition, Thin Solid Films, 518(2010), No. 24, p. 7267.

    J.C. Angus, Diamond synthesis by chemical vapor deposition:The early years, Diamond Relat. Mater., 49(2014), p. 77.

    V. Ralchenko, I. Sychov, I. Vlasov, A. Vlasov, V. Konov, A.V. Khomich, and S. Voronina, Quality of diamond wafers grown by microwave plasma CVD:Effects of gas flow rate, Diamond Relat. Mater., 8(1999), No. 2, p. 189.

    R.S. Sussmann, G.A. Scarsbrook, C.J.H. Wort, and R.M. Wood, Laser damage testing of CVD-grown diamond windows, Diamond Relat. Mater., 3(1994), No. 9, p. 1173.

    P. Koidl and C.P. Klages, Optical applications of polycrystalline diamond, Diamond Relat. Mater., 1(1992), No. 10-11, p. 1065.

    Y. Tzeng, M. Yoshikawa, M. Murakawa, and A. Feldman, Applications of Diamond Films and Related Materials, Elsevier, Amsterdam, 1991.

    L.Y.S. Pang, S.S.M. Chan, C. Johnston, P.R. Chalker, and R.B. Jackman, High temperature polycrystalline diamond metal-insulator-semiconductor field-effect-transistor, Diamond Relat. Mater., 6(1997), No. 2-4, p. 333.

    T. Ando, T. Aizawa, M. Kamo, Y. Sato, T. Anzai, H. Yamomoto, A. Wada, K. Domen, and C. Hirose, Advances in New Diamond Science and Technology, S. Saito, N. Fujirnory, O. Fukunaga, M. Kamo, K. Kobashi, and M. Yoshikawa, eds., MYU, Tokyo, 1994, 461.

    J. Shi, Z.B. Gong, Y.F. Wang, K.X. Gao, and J.Y. Zhang, Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films:Relative humidity dependent character, Appl. Surf. Sci., 422(2017), p. 147. A

    A. Gicquel, K. Hassouni, F. Silva, and J. Achard, CVD diamond films:from growth to applications, Curr. Appl. Phys., 1(2001), No. 6, p. 479.

    C. Zeng, Q.Y. Chen, M. Xu, S.H. Deng, Y. Luo, and T. Wu, Enhancement of mechanical, tribological and morphological properties of nitrogenated diamond-like carbon films by gradient nitrogen doping, Diamond Relat. Mater., 76(2017), p. 132.

    S. Kruehong, C. Kruehong, and A. Artnaseaw, Branched carbon fibres and other carbon nanomaterials grown directly from 304 stainless steel using a chemical vapour deposition process, Diamond Relat. Mater., 64(2016), p. 143.

    S. Saketi and M. Olsson, Influence of CVD and PVD coating micro topography on the initial material transfer of 316L stainless steel in sliding contacts-A laboratory study, Wear, 388-389(2017), p. 29.

    S.J. Wu, H. Kousaka, S. Kar, D. Li, and J.H. Su, Friction and wear performance of bearing ball sliding against diamond-like carbon coatings, Mater. Res. Express, 4(2017), No. 1, p. 015602.

    Y. Niiyama, N. Shimizu, A. Kuwayama, H. Okada, T. Takeno, K. Kurihara, and K. Adachi, Effect of running-in for delamination and friction properties of self-mating diamond-like carbon coatings in water, Wear, 378-379(2017), p. 27.

    E.L. Dalibón, L. Escalada, S. Simison, C. Forsich, D. Heim, and S.P. Brühl, Mechanical and corrosion behavior of thick and soft DLC coatings, Surf. Coat. Technol., 312(2017), p. 101.

    A.W. Zia, Z.F. Zhou, and L.K.Y. Li, A preliminary wear studies of isolated carbon particles embedded diamond-like carbon coatings, Tribol. Int., 114(2017), p. 42.

    M.N. Gardos, Tribology and wear behavior of diamond,[in] Synthetic Diamond:Emerging CVD Science and Technology, K.E. Spear, and J.P. Dismukes, eds., John Wiley & Sons, Inc., New York, 1994, p. 419.

    A. Grill, Review of the tribology of diamond-like carbon, Wear, 168(1993), No. 1-2, p. 143.

    M.M. Rahman, S. Talukdar, M.A. Chowdhury, R. Khan, A.A. Masum, and N. Islam, Effects of Acetylene on deposition rate of stainless steels using thermal chemical vapor deposition, Int. J. Eng. Res. Afr., 23(2016), p. 7.

    M.M. Rahman, M.A. Chowdhury, D.M. Nuruzzaman, U.K. Debnath, M.A. Kowser, and B.K. Roy, Deposition rates on stainless steel substrates of different surface roughnesses under different operating conditions using thermal CVD, Int. J. Surf. Sci. Eng., 10(2016), No. 3, p. 282.

    N.M. Rodriguez, A review of catalytically grown carbon nanofibers, J. Mater. Res., 8(1993), No. 12, p. 3233.

    J. Kong, A.M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett., 292(1998), No. 4-6, p. 567.

    T.M. Manhabosco and I.L. Müller, Tribocorrosion of diamond-like carbon deposited on Ti6Al4V, Tribol. Lett., 33(2009), No. 3, p. 193.

    A.K. Mallik, N. Dandapat, P. Ghosh, U. Ganguly, S. Jana, S. Das, K. Guha, G. Rebello, S.K. Lahiri, and S. Datta, Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials, Bull. Mater. Sci., 36(2013), No. 2, p. 193.

    M. Panda, G. Mangamma, R. Krishnan, K.K. Madapu, D.N.G. Krishna, S. Dash, and A. Tyagi, Nano scale investigation of particulate contribution to diamond like carbon film by pulsed laser deposition, RSC Adv., 6(2016), No. 8, p. 6016.

    R.O. Dillon, J.A. Woollam, and V. Katkanant, Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films, Phys. Rev. B, 29(1984), No. 6, p. 3482.

Relative Articles

Saeed Nobakht, Mohsen Kazeminezhad. Electrical annealing of severely deformed copper:microstructure and hardness [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-017-1506-2

View details

Jose D. Villegas-Cardenas, Maribel L. Saucedo-Muñoz, Victor M. Lopez-Hirata, Antonio De Ita-De la Torre, Erika O. Avila-Davila, Jorge Luis Gonzalez-Velazquez. Effect of homogenization process on the hardness of Zn–Al–Cu alloys [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-015-1170-3

View details

Yi Li, Jin-pu Li, Cheng-chang Jia, Xue-quan Liu. Fabrication of tungsten films by metallorganic chemical vapor deposition [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-012-0684-1

View details

Chengming Li, Qi He, Gang Lin, Xiaojun Sun, Weizhong Tang, Fanxiu Lu. TiN/CrN multilayered hard coatings with TiCrN interlayer deposited by a filtered cathodic vacuum arc technique [J]. 矿物冶金与材料学报(英文版).

View details

Junxiang Lei, Yonglin Kang, Fangqin Qu. Prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing [J]. 矿物冶金与材料学报(英文版).

View details

Yongping Zhang, Yousong Gu, Xiangrong Chang, Zhongzhuo Tian, Xiufang Zhang. Structure and Composition of Crystalline Carbon Nitride Films Synthesized by Microwave Plasma Chemical Vapor Deposition [J]. 矿物冶金与材料学报(英文版).

View details

Yongping Zhang, Yousong Gu, Xiangrong Chang, Zhongzhuo Tian, Dongxia Shi, Xiufang Zhanga, Lei Yuan. Carbon Nitride Films Deposited on Pt Substrates by Microwave Plasma Chemical Vapor Deposition [J]. 矿物冶金与材料学报(英文版).

View details

Qijie Zhai, Guojun Liu, Yulong Zhu, Dilin Chen. Effect of Austenitizing Treatment on Structure and Hardness of Bainite DuctileCast Iron [J]. 矿物冶金与材料学报(英文版).

View details

Citing articles(6)

Rana Faisal Shahzad, Shahid Rasul, Mohamed Mamlouk, et al. Innovative Tin and hard carbon architecture for enhanced stability in lithium-ion battery anodes. Journal of Energy Storage, 2024, 100: 113671. 必应学术
Rana Faisal Shahzad, Shahid Rasul, Mohamed Mamlouk, et al. Designing Molybdenum Trioxide and Hard Carbon Architecture for Stable Lithium‐Ion Battery Anodes. Advanced Materials Interfaces, 2024, 11(31) 必应学术
Rana Faisal Shahzad, Shahid Rasul, Mohamed Mamlouk, et al. Designing Tin and Hard Carbon Architecture for Stable Sodium‐Ion Battery Anode. Small Structures, 2024. 必应学术
More >

/

返回文章
返回