Cite this article as:

Peng Li, Mei-feng Cai, Qi-feng Guo, and Sheng-jun Miao, Characteristics and implications of stress state in a gold mine in Ludong area, China, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp.1363-1372. https://dx.doi.org/10.1007/s12613-018-1690-8
Peng Li, Mei-feng Cai, Qi-feng Guo, and Sheng-jun Miao, Characteristics and implications of stress state in a gold mine in Ludong area, China, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp.1363-1372. https://dx.doi.org/10.1007/s12613-018-1690-8
引用本文 PDF XML SpringerLink

Characteristics and implications of stress state in a gold mine in Ludong area, China

摘要: In this study, we obtained information from twenty-one measurement points on the stress magnitudes and orientations of a gold mine in the Ludong area. We used the overcoring technique with an improved hollow inclusion strain gauge and then analyzed the distribution characteristics of the in situ stress field. The results indicate that the stress field is characterized by σH > σh > σv and σH > σv > σh (where σH, σh, and σv are the maximum horizontal, minimum horizontal, and vertical principal stresses, respectively). The regional stress field is dominated by horizontal principal stress. The σH, σh, and σv values show a gradual increasing trend with depth. The σH is predominantly oriented in the NWW-SEE or near-EW direction. We also confirmed the correspondence between the measured stress field and the regional geological structure. In addition, based on the measured stress data, we discuss the implications of the in situ stress with respect to fault activity in the mine area.

 

Characteristics and implications of stress state in a gold mine in Ludong area, China

Abstract: In this study, we obtained information from twenty-one measurement points on the stress magnitudes and orientations of a gold mine in the Ludong area. We used the overcoring technique with an improved hollow inclusion strain gauge and then analyzed the distribution characteristics of the in situ stress field. The results indicate that the stress field is characterized by σH > σh > σv and σH > σv > σh (where σH, σh, and σv are the maximum horizontal, minimum horizontal, and vertical principal stresses, respectively). The regional stress field is dominated by horizontal principal stress. The σH, σh, and σv values show a gradual increasing trend with depth. The σH is predominantly oriented in the NWW-SEE or near-EW direction. We also confirmed the correspondence between the measured stress field and the regional geological structure. In addition, based on the measured stress data, we discuss the implications of the in situ stress with respect to fault activity in the mine area.

 

/

返回文章
返回