Cite this article as: |
José Luis Cabezas-Villa, José Lemus-Ruiz, Didier Bouvard, Omar Jiménez, Héctor Javier Vergara-Hernández, and Luis Olmos, Sintering study of Ti6Al4V powders with different particle sizes and their mechanical properties, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1389-1401. https://doi.org/10.1007/s12613-018-1693-5 |
Luis Olmos E-mail: luisra24@gmail.com
[1] |
C. Leyens and M. Peters, Titanium and Titanium Alloys:Fundamentals and Applications, Wiley-VCH, Weinheim, 2003, p. 1.
|
[2] |
I. Montealegre-Meléndez, E. Neubauer, and H. Danninger, Effect of starting powder grade on sintering and properties of PM titanium metal matrix composites, Powder Metall., 52(2009), No. 4, p. 322.
|
[3] |
E. Benavente-Martínez, F. Devesa, and V. Amigó, Caracterización mecánica de aleaciones Ti-Nb mediante ensayos de flexión biaxial, Rev. Metal., 46(2010), p. 19.
|
[4] |
D. Banerjee and J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(2013), No. 3, p. 844.
|
[5] |
L. Reig, V. Amigó, D.J. Busquets, and J.A. Calero, Development of porous Ti6Al4V samples by microsphere sintering, J. Mater. Process. Technol., 212(2012), No. 1, p. 3.
|
[6] |
D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine:Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer Science and Business Media, New York, 2013, p. 1.
|
[7] |
M. Yan and P. Yu, An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V-Comparison Among Selective Laser Melting, Electron Beam Melting, Laser Metal Ddeposition and Selective Laser Sintering, and with Conventional Powder, Sintering Techniques of Materials, InTech, London, 2015, p. 77.
|
[8] |
Z.Q. Yan, F. Chen, Y.X. Cai, and Y.N. Jian, Influence of particle size on property of Ti-6Al-4V alloy prepared by high-velocity compaction, Trans. Nonferrous Met. Soc. China, 23(2013), No. 2, p. 361.
|
[9] |
Y.J. Yan, G.L. Nash, and P. Nash, Effect of density and pore morphology on fatigue properties of sintered Ti-6Al-4V, Int. J. Fatigue, 55(2013), p. 81.
|
[10] |
H.P. Ng, C. Haase, R. Lapovok, and Y. Estrin, Improving sinterability of Ti-6Al-4V from blended elemental powders through equal channel angular pressing, Mater. Sci. Eng. A, 565(2013), p. 396.
|
[11] |
Y. Torres, J.A. Rodríguez, S. Arias, M. Echeverry, S. Robledo, V. Amigo, and J.J. Pavón, Processing, characterization and biological testing of porous titanium obtained by space-holder technique, J. Mater. Sci., 47(2012), No. 18, p. 6565.
|
[12] |
L. Yan, H.Y. Zhang, T. Wang, X.L. Huang, Y.Y. Li, J.S. Wu, and H.B. Chen, High-strength Ti-6Al-4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering, Mater. Sci. Eng. A, 585(2013), p. 408.
|
[13] |
L. Xu, R.P. Guo, C.G. Bai, J.F. Lei, and R. Yang, Effect of isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder, J. Mater. Sci. Technol., 30(2014), No. 12, p. 1289.
|
[14] |
V. Amigó, M.D. Salvador, F. Romero, C. Solves, and J.F. Moreno, Microestructural evolution of Ti-6Al-4V during the sintering of microspheres of Ti for orthopedic implants, J. Mater. Process. Technol., 141(2003), No. 1, p. 117.
|
[15] |
L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V, Mater. Charact., 60(2009), No. 2, p. 96.
|
[16] |
N.W. Hrabe, P. Heinl, B. Flinn, C. Körner, and R.K. Bordia, Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V), J. Biomed. Mater. Res. Part B, 99(2011), No. 2, p. 313.
|
[17] |
L. Bolzoni, T. Weissgaerber, B. Kieback, E.M. Ruiz-Navas, and E. Gordo, Mechanical behavior of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder, J. Mech. Behav. Biomed. Mater., 20(2013), p. 149.
|
[18] |
R.M. German, Sintering Theory and Practice, John Wiley and Sons, New York, USA, 1996, p. 100.
|
[19] |
H. Bayat, M. Rastgo, M.M. Zadeh, and H. Vereecken, Particle size distribution models, their characteristics and fitting capability, J. Hydrol., 529(2015), p. 872.
|
[20] |
S.S. Razavi-Tousi, R. Yazdani-Rad, and S.A. Manafi, Effect of volume fraction and particle size of alumina reinforcement on compaction and densification behavior of Al-Al2O3 nanocomposites, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1105.
|
[21] |
W. Chen, Y. Yamamoto, W.H. Peter, M.B. Clark, S.D. Nunn, J.O. Kiggans, T.R. Muth, C.A. Blue, J.C. Williams, and K. Akhtar, The investigation of die-pressing and sintering behavior of ITP CP-Ti and Ti-6Al-4V powders, J. Alloys Compd., 541(2012), p. 440.
|
[22] |
R. Lapovok, D. Tomus, and B.C. Muddle, Low-temperature compaction of Ti-6Al-4V powder equal channel angular extrusion with back pressure, Mater. Sci. Eng. A, 490(2008), No. 1-2, p. 171.
|
[23] |
X.Y. Xu and P. Nash, Sintering mechanisms of Armstrong prealloyed Ti-6Al-4V powders, Mater. Sci. Eng. A, 607(2014), p. 409.
|
[24] |
O.M. Ivasishin, D.G. Savvakin, F. Froes, V.C. Mokson, and K.A. Bondareva, Synthesis of alloy Ti-6Al-4V with low residual porosity by a powder metallurgy method, Powder Metall. Met. Ceram., 41(2002), No. 7-8, p. 382.
|
[25] |
D.F. Khan, H.Q. Yin, H. Li, X.H. Qu, M. Khan, S. Ali, and M.Z. Iqbal, Compaction of Ti-6Al-4V powder using high velocity compaction technique, Mater. Des., 50(2013), p. 479.
|
[26] |
M. P. I. Federation, Standard Test Methods for Metal Powders and Powder Metallurgy Products, Metal Powder Industries Federation, Princeton, 2002, p. 1.
|
[27] |
M. Dewidar, Microstructure and mechanical properties of biocompatible high density Ti-6Al-4V/W produced by high frequency induction heating sintering, Mater. Des., 31(2010), No. 8, p. 3964.
|
[28] |
X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, and R.B. Wicker, Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., 16(2012), p. 153.
|
[29] |
L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy, Mater. Sci. Eng. C, 49(2015), p. 400.
|
[30] |
J. Chávez, L. Olmos, O. Jiménez, D. Bouvard, E. Rodríguez, and M. Florers, Sintering behaviour and mechanical characterisation of Ti64/xTiN composites and bilayer components, Powder Metall., 60(2017), No. 4, p. 257.
|
[31] |
B.B. Panigrahi, M.M. Godkhindi, K. Das, P.G. Mukunda, and P. Ramakrishnan, Sintering kinetics of micrometric titanium powder, Mater. Sci. Eng. A, 396(2005), No. 1-2, p. 255.
|
[32] |
Y. Kim, Y.B. Song, S.H. Lee, and Y.S. Kwon, Characterization of the hot deformation behavior and microstructural evolution of Ti-6Al-4V sintered performs using materials modeling techniques, J. Alloys Compd., 676(2016), p. 15.
|
[33] |
J. Wang and R. Raj, Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina, and alumina doped with zirconia or Titania, J. Am. Ceram. Soc., 73(1990), No. 5, p. 1172.
|
[34] |
Y. Mishin and C. Herzig, Diffusion in the Ti-Al system, Acta Mater., 48(2000), No. 3, p. 589.
|
[35] |
A.E. Pontau and D. Lazarus, Diffusion of titanium and niobium in bcc Ti-Nb alloys, Phys. Rev. B:Condens. Matter, 19(1979), No. 8, p. 4027.
|
[36] |
M. Köppers, C. Herzig, M. Friesel, and Y. Mishin, Intrinsic self-diffusion and substitutional Al diffusion in α-Ti, Acta Mater., 45(1997), No. 10, p. 4181.
|
[37] |
G. Neumann, V. Tölle, and C. Tuijn, On the impurity diffusion in β-Ti, Physica B, 296(2001), No. 4, p. 334.
|
[38] |
I.M. Robertson and G.B. Schaffer, Some effects of particle size on the sintering of titanium and a master sintering curve model, Metall. Mater. Trans. A, 40(2009), No. 8, p. 1968.
|
[39] |
C. Herzig, T. Wilger, T. Przeorski, F. Hisker, and S. Divinski, Titanium tracer diffusion in grain boundaries of α-Ti, α2-Ti3Al, and γ-TiAl and in α2/γ interphase boundaries, Intermetallics, 9(2001), No. 5, p. 431.
|
[40] |
F.B. Swinkels and M.F. Ashby, A second report on sintering diagrams, Acta Metal., 29(1981), No. 2, p. 259.
|
[41] |
S.J.L. Kang and Y.I. Jung, Sintering kinetics at final stage sintering:model calculation and map construction, Acta Mater., 52(2004), No. 15, p. 4573.
|
[42] |
R.M. German, The sintering of 304L stainless steel powder. Metall. Trans. A, 7(1976), No. 12, p. 1879.
|
[43] |
Y. Torres, S. Lascano, J. Bris, J. Pavón, and J.A. Rodriguez, Development of porous titanium for biomedical applications:A comparison between loose sintering and space-holder techniques, Mater. Sci. Eng. C, 37(2014), p. 148.
|
[44] |
J. Kováčik, The tensile behavior of porous metals made by GASAR process, Acta Mater., 46(1998), No. 15, p. 5413.
|
[45] |
J. Kováčik, Correlation between Young's modulus and porosity in porous materials, J. Mater. Sci. Lett., 18(1999), No. 13, p. 1007.
|
[46] |
L.J. Gibson and M.F. Ashby, Cellular Solids:Structure and Properties, Cambridge University Press, Cambridge, 1999, p. 52.
|
[47] |
C. Simoneau, V. Brailovski, and P. Terriault, Design, manufacture and tensile properties of stochastic porous metallic structures, Mech. Mater., 94(2016), p. 26.
|
[48] |
L.F. Nielsen, Elasticity and damping of porous materials and impregnated materials, J. Am. Ceram. Soc., 67(1984), No. 2, p. 93.
|
[49] |
R.M. German, Sintering:From Empirical Observations to Scientific Principles, Butterworth-Heinemann Elsevier Ltd, Oxford, 2014, p. 141.
|
[50] |
A. Taşdemirci, A. Hızal, M. Altındiş, I.W. Hall, and M. Gü den, The effect of strain rate on the compressive deformation behavior of a sintered Ti6Al4V powder compact, Mater. Sci. Eng. A, 474(2008), No. 1-2, p. 335.
|
[51] |
M.E. Dizlek, M. Guden, U. Turkan, and A. Tasdemirci, Processing compression testing of Ti6Al4V foams for biomedical applications, J. Mater. Sci., 44(2009), No. 6, p. 1512.
|
[52] |
D. Eylon, F.H. Froes, D.G. Heggie, P.A. Blenkinsop, and R.W. Gardiner, Influence of thermomechanical processing on low cycle fatigue of prealloyed Ti-6Al-4V powder compacts, Metall. Trans. A, 14(1983), No. 12, p. 2497.
|