留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 12
Dec.  2018
数据统计

分享

计量
  • 文章访问数:  900
  • HTML全文浏览量:  198
  • PDF下载量:  38
  • 被引次数: 0
Tevfik Küçükömeroğlu, Semih M. Aktarer, Güven İpekoğlu,  and Gürel Çam, Microstructure and mechanical properties of friction-stir welded St52 steel joints, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1457-1464. https://doi.org/10.1007/s12613-018-1700-x
Cite this article as:
Tevfik Küçükömeroğlu, Semih M. Aktarer, Güven İpekoğlu,  and Gürel Çam, Microstructure and mechanical properties of friction-stir welded St52 steel joints, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1457-1464. https://doi.org/10.1007/s12613-018-1700-x
引用本文 PDF XML SpringerLink
研究论文

Microstructure and mechanical properties of friction-stir welded St52 steel joints

  • 通讯作者:

    Güven İpekoğlu    E-mail: guven.ipekoglu@iste.edu.tr

  • The aim of this work is to investigate the mechanical properties and microstructures of friction-stir welded (FSWed) St52 structural steel joints. In this study, St52 steel plates with a thickness of 4 mm were butt-welded by friction-stir welding (FSW) using a tungsten carbide tool having a conical pin. The microstructure of the welded zone consists of equiaxed fine ferrite, grain boundary ferrite, Widmanstatten ferrite, and aggregates of ferrite + cementite. The microhardness measurements showed that the hardness of the welded zone was significantly higher than that of the base metal. The FSWed St52 joint exhibited a significant strength overmatching in the weld region and a strength performance similar to or slightly higher than that of the base plate.
  • Research Article

    Microstructure and mechanical properties of friction-stir welded St52 steel joints

    + Author Affiliations
    • The aim of this work is to investigate the mechanical properties and microstructures of friction-stir welded (FSWed) St52 structural steel joints. In this study, St52 steel plates with a thickness of 4 mm were butt-welded by friction-stir welding (FSW) using a tungsten carbide tool having a conical pin. The microstructure of the welded zone consists of equiaxed fine ferrite, grain boundary ferrite, Widmanstatten ferrite, and aggregates of ferrite + cementite. The microhardness measurements showed that the hardness of the welded zone was significantly higher than that of the base metal. The FSWed St52 joint exhibited a significant strength overmatching in the weld region and a strength performance similar to or slightly higher than that of the base plate.
    • loading
    • [1]
      W.M.N. Thomas, E.D. Nicholas, C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, Friction Stir Butt Welding, Int. Patent Appl. PCT/GB92/02203 and GB Patent Appl. 9125978.8, 1991, and US Patent Appl. 5460317, 1995.
      [2]
      R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, (50)2005, No. 1-2, p. 1.
      [3]
      G. Çam and G. İpekoğlu, Recent developments in joining of aluminium alloys, Int. J. Adv. Manuf. Technol., 91(2017), No. 5-8, p. 1851.
      [4]
      G. Çam, Friction stir welded structural materials:beyond Al-alloys, Int. Mater. Rev., 56(2011), No. 1, p. 1.
      [5]
      G. Çam, G. İpekoğlu, T. Küçükömeroğlu, and S.M. Aktarer, Applicability of friction stir welding to steels, J. Achv. Mater. Manuf. Eng., 80(2017), No. 2, p. 65.
      [6]
      R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent advances in friction-stir welding-Process, weldment structure and properties, Prog. Mater. Sci., 53(2008), No. 6, p. 980.
      [7]
      J.A. Esparza, W.C. Davis, E.A. Trillo, and L.E. Murr, Friction-stir welding of magnesium alloy AZ31B, J. Mater. Sci. Lett., 21(2002), No. 12, p. 917.
      [8]
      S. Rajakumar, A. Razalrose, and V. Balasubramanian, Friction stir welding of AZ61A magnesium alloy, Int. J. Adv. Manuf. Technol., 68(2013), No. 1-4, p. 277.
      [9]
      Y. Templeman, G.B. Hamu, and L. Meshi, Friction stir welded AM50 and AZ31 Mg alloys:Microstructural evolution and improved corrosion resistance, Mater. Charact., 126(2017), p. 86.
      [10]
      W.M. Thomas, P.L. Threadgill, and E.D. Nicholas, Feasibility of friction stir welding steel, Sci. Technol. Weld. Joining, 4(1999), No. 6, p. 365.
      [11]
      M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, and B. Bagheri, Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints, J. Mech. Sci. Technol., 31(2017), No. 3, p. 1135.
      [12]
      F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A review of friction stir welding of steels:Tool, material flow, microstructure, and properties, J. Mater. Sci. Techol., (34)2018, No. 1, p. 39.
      [13]
      H.H. Liu and H. Fujii, Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding, Mater. Sci. Eng. A, 711(2018), p. 140.
      [14]
      S. Mironov, Y.S. Sato, and H. Kokawa, Friction-stir welding and processing of Ti-6Al-4V titanium alloy:A review, J. Mater. Sci. Techol., 34(2018), No. 1, p. 58.
      [15]
      P. Edwards and M. Ramulu, Fatigue performance of friction stir welded titanium structural joints, Int. J. Fatigue, 70(2015), p. 171.
      [16]
      H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, Friction stir welding of carbon steels, Mater. Sci. Eng. A, 429(2006), No. 1-2, p. 50.
      [17]
      T.J. Lienert, W.L. Stellwag, B.B. Grimmett, and R.W. Warke, Friction stir welding studies on mild steel-Process results, microstructures, and mechanical properties are reported, Weld. J., 82(2003), No. 1, p. 1-S.
      [18]
      L. Cui, H. Fujii, N. Tsuji, and K. Nogi, Friction stir welding of a high carbon steel, Scripta Mater., 56(2007), No. 7, p. 637.
      [19]
      M. Imam, R. Ueji, and H. Fujii, Microstructural control and mechanical properties in friction stir welding of medium carbon low alloy S45C steel, Mater. Sci. Eng. A, 636(2015), p. 24.
      [20]
      H. Fujii, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, and K. Nogi, Friction stir welding of ultrafine grained interstitial free steels, Mater. Trans., 47(2006), No. 1, p. 239.
      [21]
      L.F. Cui, H. Fujii, N. Tsuji, K. Nakata, K. Nogi, R. Ikeda, and M. Matsushita, Transformation in stir zone of friction stir welded carbon steels with different carbon contents, ISIJ Int.,47(2007), No. 2, p. 299.
      [22]
      A.J. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel, and S. Packer, A microstructural study of friction stir welded joints of carbon steels, Int. J. Offshore Polar Eng., 14(2004). No. 4, p. 284.
      [23]
      D.H. Choi, C.Y. Lee, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokowa, and S.B. Jung, Effect of fixed location variation in friction stir welding of steels with different carbon contents, Sci. Technol. Weld. Joining, 15(2010), No. 4, p. 299.
      [24]
      D.H. Choi, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokowa, and S.B. Jung, Microstructural characterizations following friction stir welding of dissimilar alloys of low-and high-carbon steels, Mater. Trans., 52(2011), No. 7, p. 1500.
      [25]
      P.L. Threadgill, Terminology in friction stir welding, Sci. Technol. Weld. Joining, 12(2007), No. 4, p. 357.
      [26]
      P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets, Mater. Sci. Eng. A, 518(2009), No. 1-2, p. 1.
      [27]
      G. Thewlis, Classification and quantification of microstructures in steels, Mater. Sci. Techol., 20(2004), No. 2, p. 143.
      [28]
      M. Jafarzadegan, A.H. Feng, A. Abdollah-zadeh, T. Saeid, J. Shen, and H. Assadi, Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and St37 steel, Mater. Charact., 74(2012), p. 28.
      [29]
      G. Çam, Ç. Yeni, S. Erim, V. Ventzke, and M. Koçak, Investigation into properties of laser welded similar and dissimilar steel joints, Sci. Technol. Weld. Joining, 3(1998), No. 4, p. 177.
      [30]
      G. Çam, G. İpekoğlu, and H.T. Serindağ, Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints, Sci. Technol. Weld. Joining, 19(2014), No. 8, p. 715.
      [31]
      G. İpekoğlu, S. Erim, and G. Çam, Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions, Metall. Mater. Trans. A, 45(2014), No. 2, p. 864.
      [32]
      G. İpekoğlu, S. Erim, B. G. Kıral, and G. Çam, Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates, Kovove Mater., 51(2013), No. 3, p. 155.
      [33]
      G. İpekoğlu, B.G. Kıral, S. Erim, and G. Çam, Investigation of the effect of temper condition on friction stir weldability of AA7075 Al-alloy plates, Mater. Tehnol., 46(2012), No. 6, p. 627.
      [34]
      G. Çam, S. Güçlüer, A. Çakan, and H.T. Serindağ, Mechanical properties of friction stir butt-welded Al-5086 H32 plate, Materialwiss. Werkstofftech., 40(2009), No. 8, p. 638.
      [35]
      G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, M. Penasa, and C. Rivezla, Characterization of laser and electron beam welded Al-alloys, Prakt. Metallogr., 37(2000), No. 2, p. 59.
      [36]
      G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, G. Jennequin, and P. Gonthier-Maurin, Characterisation of electron beam welded aluminium alloys, Sci. Technol. Weld. Joining, 4(1999), No. 5, p. 317.
      [37]
      T. Küçükömeroğlu, E. Şentürk, L. Kara, G. İpekoğlu, and G. Çam, Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy, J. Mater. Eng. Perform., 25(2016,) No. 1, p. 320.
      [38]
      G. Çam, S. Mistikoglu, and M. Pakdil, Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu-37%Zn brass plate, Weld. J., 88(2009), No. 11, p. 225S.
      [39]
      G. Çam, H.T. Serindag, A. Çakan, S. Mistikoglu, and H. Yavuz, The effect of weld parameters on friction stir welding of brass plates, Materialwiss. Werkstofftech., 39(2008), No. 6, p. 394.
      [40]
      X.C. He, F.S. Gu, and A. Ball, A review of numerical analysis of friction stir welding, Prog. Mater. Sci., 65(2014), p. 1.

    Catalog


    • /

      返回文章
      返回