留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 12
Dec.  2018
数据统计

分享

计量
  • 文章访问数:  767
  • HTML全文浏览量:  164
  • PDF下载量:  24
  • 被引次数: 0
Azhar Iqbal, Long Chen, Yong Chen, Yu-xian Gao, Fang Chen,  and Dao-cong Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1473-1481. https://doi.org/10.1007/s12613-018-1702-8
Cite this article as:
Azhar Iqbal, Long Chen, Yong Chen, Yu-xian Gao, Fang Chen,  and Dao-cong Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1473-1481. https://doi.org/10.1007/s12613-018-1702-8
引用本文 PDF XML SpringerLink
研究论文

Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode

  • 通讯作者:

    Azhar Iqbal    E-mail: aiqbalchemist@yahoo.com

  • A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi0.8Mn0.1Co0.1O2 cathode and SiO-C composite anode. The LiNi0.8Mn0.1Co0.1O2 and SiO-C exhibited excellent electrochemical performance in both half and full cells. Specifically, when integrated into a full cell configuration, a high energy density (280 Wh·kg-1) with excellent rate capability and long cycle life was attained. At 0.5C, the full cell retained 80% of its initial capacity after 200 charge/discharge cycles, and 60% after 600 cycles, indicating robust structural tolerance for the repeated insertion/extraction of Li+ ions. The rate performance showed that, at high rate of 1C and 2C, 96.8% and 93% of the initial capacity were retained, respectively. The results demonstrate strong potential for the development of high energy density Li-ion batteries for practical applications.
  • Research Article

    Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode

    + Author Affiliations
    • A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi0.8Mn0.1Co0.1O2 cathode and SiO-C composite anode. The LiNi0.8Mn0.1Co0.1O2 and SiO-C exhibited excellent electrochemical performance in both half and full cells. Specifically, when integrated into a full cell configuration, a high energy density (280 Wh·kg-1) with excellent rate capability and long cycle life was attained. At 0.5C, the full cell retained 80% of its initial capacity after 200 charge/discharge cycles, and 60% after 600 cycles, indicating robust structural tolerance for the repeated insertion/extraction of Li+ ions. The rate performance showed that, at high rate of 1C and 2C, 96.8% and 93% of the initial capacity were retained, respectively. The results demonstrate strong potential for the development of high energy density Li-ion batteries for practical applications.
    • loading
    • [1]
      Y. Ding, D.B. Mu, B.R. Wu, R. Wang, Z.K. Zhao, and F. Wu, Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles, Appl. Energy, 195(2017), p. 586.
      [2]
      K. Wang, Y.M. Wei, and X. Zhang, Energy and emissions efficiency patterns of Chinese regions:A multi-directional efficiency analysis, Appl. Energy, 104(2013), p. 105.
      [3]
      Y.Z. Zhang, R. Xiong, H.W. He, and W.X. Shen, A lithium-ion battery pack state of charge and state of energy estimation algorithms using a hardware-in-the-loop validation, IEEE Trans. Power Electron., 32(2017), No. 6, p. 4421.
      [4]
      Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111(2011), No. 5, p. 3577.
      [5]
      F.C. Sun, R. Xiong, and H.W. He, A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique, Appl. Energy, 162(2016), p. 1399.
      [6]
      J.H Lee, C.S. Yoon, J.Y Hwang, S.J Kim, F. Maglia, P. Lamp, S.T. Myung, and Y.K. Sun, High-energy-density lithium-ion battery using carbon-nanotube-si composite anode and compositionally graded Li[Ni0.85Co0.05Mn0.10] O2 cathode, Energy Environ. Sci., 9(2016), No. 6, p. 2152.
      [7]
      Z.H. Sun, D.D. Wang, Y.Y. Fan, L.S. Jiao, F.H. Li, T.S. Wu, D.X. Han, and L. Niu, Improved performances of LiNi0.6Co0.15Mn0.25O2 cathode material with full concentration-gradient for lithium ion batteries, RSC Adv., 6(2016), No. 105, p. 103747.
      [8]
      J.C. Zheng, B.Y. Yang, X.W. Wang, B. Zhang, H. Tong, W.J. Yu, and J.F. Zhang, Comparative investigation of Na2FeP2O7 sodium insertion material synthesized by using different sodium sources, ACS Sustainable Chem. Eng. 6(2018), No. 4, p. 4966.
      [9]
      C.X. Zhou, P.B. Wang, J.C. Zheng, C.Y. Xia, B. Zhang, X.M. Xi, K.S. Xiao, D.Q. Liao, L.S. Yang, X.Q. Chen, and S.B. Qin, Cyclic performance of Li-rich layered material Li1.1Ni0.35Mn0.65O2 synthesized through a two-step calcination method, Electrochem. Acta, 252(2017), p. 286.
      [10]
      P.B. Wang, M.Z. Luo, J.C. Zheng, Z.J. He, H. Tong, and W.J. Yu, Comparative investigation of 0.5Li2MnO3.0.5LiNi0.5Co0.2Mn0.3O2 cathode materials synthesized by using different lithium sources, Front. Chem. 6(2018), p. 1.
      [11]
      M. Marinaro, D.H. Yoon, G. Gabrielli, P. Stegmaier, E. Figgemeier, P.C. Spurk, D. Nelis, G. Schmidt, J. Chauveau, P. Axmann, and M.W. Mehrens, High performance 1.2 Ah Si-alloy/Graphite|LiNi0.5Mn0.3Co0.2O2 prototype Li-ion battery, J. Power Sources, 357(2017), p. 188.
      [12]
      S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, and Y.K. Sun, Nickel-rich layered cathode materials for automotive lithium-ion batteries, ACS Energy Lett., 2(2016), No. 1, p. 196.
      [13]
      F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky, and D. Aurbach, Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy:Zirconium-doped Ni0.6Co0.2Mn0.2O2, J. Mater. Chem. A, 4(2016), No. 41, p. 16073.
      [14]
      S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, and C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, 257(2014), p. 421.
      [15]
      N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, and Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett., 12(2012), No. 6, p. 3315.
      [16]
      J.H. Kim, H.J. Sohn, H. Kim, G. Jeong, and W. Choi, Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries, J. Power Sources, 170(2007), No. 2, p. 456.
      [17]
      J.Y. Zhang, C.Q. Zhang, Z. Liu, J. Zheng, Y.H. Zuo, C.L. Xue, C.B. Li, and B.W. Cheng, High-performance ball-milled SiOx anodes for lithium ion batteries, J. Power Sources, 339(2017), p. 86.
      [18]
      H.R. Kim, S.G. Woo, J.H. Kim, W. Cho, and Y.J. Kim, Capacity fading behavior of Ni-rich layered cathode materials in Li-ion full cells, J. Electroanal. Chem., 782(2016), p. 168.
      [19]
      T. Ohzuku, A. Ueda, and M. Nagayama, Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium batteries, J. Electrochem. Soc., 140(1993), No. 7, p. 1862.
      [20]
      W. Li, J.N. Reimers, and J.R. Dahn, In situ x-ray diffraction and electrochemical studies of Li1-xNiO2, Solid State Ionics, 67(1993), No. 1-2, p. 123.
      [21]
      H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, Characterization and cathode performance of Li1-xNi1+xO2 prepared with the excess lithium method, Solid State Ionics, 80(1995), No. 3-4, p. 261.
      [22]
      J. Yang and Y.Y. Xia, Enhancement on cycling stability of the layered Ni-rich oxide cathode by in-situ fabricating nano-thickness cation-mixing layers, J. Electrochem. Soc., 163(2016), No. 13, p. A2665.
      [23]
      J. Yang and Y.Y. Xia, Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3, ACS Appl. Mater. Interfaces, 8(2016), No. 2, p. 1297.
      [24]
      J. Yang, M.Y. Hou, S. Haller, Y.G. Wang, C.X. Wang, and Y.Y. Xia, Improving the cycling performance of the layered Ni-rich oxide cathode by introducing low-content Li2MnO3, Electrochim. Acta, 189(2016), p. 101.
      [25]
      J. Park, G.P. Kim, I. Nam, S. Park, and J. Yi, One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries, Nanotechnology, 24(2013), No. 2, p. 025602.
      [26]
      Y.S. Hu, R. Demir-Cakan, M.M. Titirici, J.O.Müller, R. Schlögl, M. Antonietti, and J. Maier, Superior storage performance of a Si@SiO x/C nanocomposite as anode material for lithium-ion batteries, Angew. Chem. Int. Ed., 47(2008), No. 9, p. 1645.
      [27]
      H.F. Yang, Y. Yan, Y. Liu, F.Q. Zhang, R.Y. Zhang, Y. Meng, M. Li, S.H. Xie, B. Tu, and D.Y. Zhao, A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches, J. Phys. Chem. B, 108(2004), No. 45, p. 17320.
      [28]
      C.M. Park, W. Choi, Y. Hwa, J.H. Kim, G. Jeong, and H.J. Sohn, Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries, J. Mater. Chem. 20(2010), No. 23, p. 4854.
      [29]
      M. Mamiya, H. Takei, M. Kikuchi, and C. Uyeda, Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction, J. Cryst. Growth, 229(2001), No. 1-4, p. 457.
      [30]
      I. Choi, M.J. Lee, S.M. Oh, and J.J. Kim, Fading mechanisms of carbon-coated and disproportionate Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries:Dynamics and component analysis by TEM, Electrochem. Acta, 85(2012), p. 369.
      [31]
      J.P. Maranchi, A.F. Hepp, A.G. Evans, N.T. Nuhfer, and P.N. Kumta, Interfacial properties of the a Si/Cu:active-inactive thin-film anode system for lithiumion batteries, J. Electrochem. Soc., 153(2006), No. 6, p. A1246.
      [32]
      A. Konarov, S.T. Myung, and Y.K. Sun, Cathode materials for future electric vehicles and energy storage systems, ACS Energy Lett., 2(2017), No. 3, p. 703.
      [33]
      K. Eom, T. Joshi, A. Bordes, I. Do, and T.F. Fuller, The design of a Li-ion full cell battery using a nano silicaon and nano multi-layer graphene composite anode, J. Power Sources, 249(2014), p. 118.
      [34]
      S.E. Trask, K.Z. Pupek, J.A. Gilbert, M. Klett, B.J. Polzin, A.N. Jansen, and D.P. Abraham, Performance of full cells containing carbonate-based LiFSI electrolytes and silicon-graphite negative electrodes, J. Electrochem. Soc. 163(2016), No. 3, p. A345.
      [35]
      P.F. Zhou, H.J. Meng, Z. Zhang, C.C. Chen, Y.Y. Lu, J. Cao, F.Y. Cheng, and J. Chen, Stable layered Ni-rich LiNi0.9Co0.07Al0.03O2 microspheres assembled with nanoparticles as high-performance cathode materials for lithium-ion batteries, J. Mater. Chem. A, 5(2017), No. 6, p. 2724.
      [36]
      L.S. Jiao, Z.B. Liu, Z.H. Sun, T.S. Wu, Y.Z. Gao, H.Y. Li, F.H. Li, and L. Niu, An advanced lithium ion battery based on a high quality graphitic graphene anode and a Li[Ni0.6Co0.2Mn0.2] O2 cathode, Electrochem. Acta, 259(2018), p. 48.
      [37]
      J.M. Zheng, P.F. Yan, R.G. Cao, H.F. Xiang, M.H. Engelhard, B.J. Polzin, C.M. Wang, J.G. Zhang, and W. Xu, Effects of propylene carbonate content in CsPF6-containing electrolytes on the enhanced performances of graphite electrode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 8, p. 5715.

    Catalog


    • /

      返回文章
      返回