Cite this article as: |
V. H. Vargas, I. Mejía, V. H. Baltazar-Hernández, and C. Maldonado, Effect of retained austenite and nonmetallic inclusions on the thermal/electrical properties and resistance spot welding nuggets of Si-containing TRIP steels, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp. 52-63. https://doi.org/10.1007/s12613-019-1709-9 |
I. Mejía E-mail: imejia@umich.mx
[1] |
A. Grajcar, M. Różański, M. Kamińska, and B. Grzegorczyk, Study on non-metallic inclusions in laser-welded TRIP-aided Nb-microalloyed steel, Arch. Metall. Mater., 59(2014), No. 3, p. 1163.
|
[2] |
L.I. Lin, B.C. De Cooman, R.D. Liu, J. Vleugels, M. Zhang, and S.H. Wen, Design of TRIP steel with high welding and galvanizing performance in light of thermodynamics and kinetics, J. Iron Steel Res. Int., 14(2007), No. 6, p. 37.
|
[3] |
A. Mohamadizadeh, A. Zarei-Hanzaki, S. Mehtonen, D. Porter, and M. Moallemi, Effect of intercritical thermomechanical processing on austenite retention and mechanical properties in a multiphase TRIP-assisted steel, Metall. Mater. Trans. A, 47(2016), No. 1, p. 436.
|
[4] |
H.L. Yi, Review on δ-transformation-induced plasticity (TRIP) steels with low density:the concept and current progress, JOM, 66(2014), No. 9, p. 1759.
|
[5] |
M. Pouranvari and S.P.H. Marashi, Critical review of automotive steels spot welding:process, structure and properties, Sci. Technol. Weld. Joining, 18(2013), No. 5, p. 361.
|
[6] |
K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssière, Encyclopedia of Materials:Science and Technology, Elsevier, Michigan, 2001, p. 4807.
|
[7] |
B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, 2nd ed., Wiley-IEEE Press, New Jersey, 2008.
|
[8] |
M. Amirthalingam, M.J.M. Hermans, L. Zhao, and I.M. Richardson, Quantitative analysis of microstructural constituents in welded transformation-induced-plasticity steels, Metall. Mater. Trans. A, 41(2009), No. 431, p. 430.
|
[9] |
M. Amirthalingam, M. Hermans, and I.M. Richardson, Microstructural development during welding of silicon and aluminum based transformation induced plasticity steels-inclusion and elemental partitioning analysis, Metall. Mater. Trans. A, 40(2009), No. 901, p. 901.
|
[10] |
E. Girault, P. Jacques, Ph. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, and F. Delannay, Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels, Mater. Charact., 40(1998), No. 2, p. 111.
|
[11] |
L. Zhao, N.H. van Dijk, E. Brück, J. Sietsma, and S. van der Zwaag, Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels, Mater. Sci. Eng. A, 313(2000), No. 1-2, p. 145.
|
[12] |
M. Soliman, B. Weidenfeller, and H. Palkowski, Metallurgical phenomena during processing of cold rolled trip steel, Steel Res. Int., 80(2009), No. 1, p. 57.
|
[13] |
O. Matsumura, Y. Sakuma, and H. Takechi, Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel, Trans. Iron Steel Inst. Jpn., 27(1987), No. 7, p. 570.
|
[14] |
G. Azizi, H. Mirzadeh, and M.H. Parsa, Dependency of deformation behavior of retained austenite in TRIP steels on microstructural and chemical homogeneity, Acta Metall. Sin. Engl. Lett., 28(2015), No. 10, p. 1272.
|
[15] |
H.X. Yin, A.M. Zhao, Z.Z. Zhao, X. Li, S.J. Li, H.J. Hu, and W.G. Xia, Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 262.
|
[16] |
Z. Li, D. Wu, and J.X. Liu, Effects of austempering on the mechanical properties of the hot rolled Si-Mn TRIP steels, J. Wuhan Univ. Technol., 21(2006), No. 3, p. 21.
|
[17] |
I. Tsukatani, S. Hashimoto, and T. Inoue, Effect of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite, ISIJ Int., 31(1991), No. 9, p. 992.
|
[18] |
J.R. Green and D. Margerison, Statistical Treatment of Experimental Data, P.T. Tomkins, eds., Elsevier, Amsterdam, 1978.
|
[19] |
A.J. DeArdo, C.I. Garcia, K. Cho, and M. Hua, New method of characterizing and quantifying complex microstructures in steels, Mater. Manuf. Processes, 25(2010), No. 1-3, p. 33.
|
[20] |
S. Han, H. Seong, Y. Ahn, C.I. Garcia, A.J. DeArdo, and I. Kim, Effect of alloying elements and coiling temperature on the recrystallization behavior and the bainitic transformation in TRIP steels, Met. Mater. Int., 15(2009), No. 4, p. 521.
|
[21] |
M. Radu, J. Valy, A.F. Gourgues, F. Le Strat, and A. Pineau, Continuous magnetic method for quantitative monitoring of martensitic transformation in steels containing metastable austenite, Scripta Mater., 52(2005), No. 6, p. 525.
|
[22] |
M.B. Karimi, H. Arabi, A. Khosravani, and J. Samei, Effect of rolling strain on transformation induced plasticity of austenite to martensite in high-alloy austenitic steel, J. Mater. Process. Technol., 203(2008), No. 1-3, p. 349.
|
[23] |
A.A. Shatsov and M.G. Latypov, Role of nickel and carbon in concentration-inhomogeneous trip steels, Met. Sci. Heat Treat., 43(2001), No. 5-6, p. 248.
|
[24] |
P.J. Jacques, S. Allain, O. Bouaziz, A. De, A.F. Gourgues, B.M. Hance, Y. Houbaert, J. Huang, A. Iza-Mendia, S.E. Kruger, M. Radu, L. Samek, J. Speer, L. Zhao, and S. van der Zwaag, On the measurement of retained austenite in multiphase TRIP steels-results of blind round robin test involving six different technique, Mater. Sci. Technol., 25(2009), No. 5, p. 567.
|
[25] |
S. Berveiller, K. Inal, R. Kubler, A. Eberhardt, and E. Patoor, Experimental approach of the martensitic transformation in shape-memory alloys and TRIP steels, J. Phys. IV, 115(2004), p. 261.
|
[26] |
M. Gomez, C.I. Garcia, and A.J. Deardo, The role of new ferrite on retained austenite stabilization in Al-TRIP steels, ISIJ Int., 50(2010), No. 1, p. 139.
|
[27] |
D. Jandová, R. Divišová, L. Skálová, and J. Drnek, Refinement of steel microstructure by free forging, J. Achiev. Mater. Manuf. Eng., 16(2006), No. 1-2, p. 17.
|
[28] |
J. Hidalgo, K.O. Findley, and M.J. Santofimia, Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering, Mater. Sci. Eng. A, 690(2017), No. 6, p. 337.
|
[29] |
S.S.M. Tavares, S.R. Mello, A.M. Gomes, J.M. Neto, M.R. da Silva, and J.M. Pardal, X-ray diffraction and magnetic characterization of the retained austenite in a chromium alloyed high carbon steel, J. Mater. Sci., 41(2005), No. 15, p. 4732.
|
[30] |
R.E. Hummel, Electronic Properties of Materials, Springer, New York, 2011.
|
[31] |
D.S. Petrovic, Non-oriented electrical steel sheets, Mater. Technol., 44(2010), No. 6, p. 317.
|
[32] |
J. Barros, T. Ros-Yañez, L. Vandenbossche, L. Dupré, J. Melkebeek, and Y. Houbaert, The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel, J. Magn. Magn. Mater., 290-291(2005), p. 1457.
|
[33] |
K. Jenkins and M. Lindenmo, Precipitates in electrical steels, J. Magn. Magn. Mater., 320(2008), No. 20. p. 2423.
|
[34] |
H. Oikawa, G. Murayama, T. Sakiyama, Y. Takahashi, and T. Ishikawa, Resistance spot weldability of high strength steel (HSS) sheets for automobiles, Nippon Steel Technical Report, No. 95, p. 39.
|
[35] |
D. Pereira, T. Clarke, R. Menezes, and T. Hirsch, Effect of microstructure on the electrical conductivity of Inconel 718 alloys, Mater. Sci. Technol., 31(2015), No. 6, p. 669.
|
[36] |
P. Beckley and J.E. Thompson, Influence of inclusions on domain-wall motion and power loss in oriented electrical steel, Proc. Inst. Electr. Eng., 117(1970), No. 11, p. 2194.
|
[37] |
M.F. Littmann, Iron and silicon-iron alloys, IEEE Trans. Magn. 7(1971), No. 1, p. 48.
|
[38] |
T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley & Sons, Hoboken, N.J., 2007, p. 70.
|
[39] |
H. Ghazanfari and M. Naderi, Expulsion characterization in resistance spot welding by means of a hardness mapping technique, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 894.
|
[40] |
N. den Uijl, Resistance spot welding of a complicated joint in new advanced high strength steel,[in] Proceedings of the 6th International Seminar on Advances in Resistance Welding, Hamburg, 2010.
|
[41] |
A. Grajcar, M. Kamińska, U. Galisz, L. Bulkowski, M. Opiela, and P. Skrzypczyk, Modification of non-metallic inclusions in high-strength steels containing increased Mn and Al contents, J. Achiev. Mater. Manuf. Eng., 55(2012), No. 2, p. 245.
|
[42] |
N.J. den Uijl, Thermal and electrical resistance in resistance spot welding,[in] Proceedings of the 17th International Conference on Computer Technology in Welding and Manufacturing, Cranfield, 2008.
|
[43] |
M. Pouranvari, H.R. Asgari, S.M. Mosavizadch, P.H. Marashi, and M. Goodarzi, Effect of weld nugget size on overload failure mode of resistance spot welds, Sci. Technol. Weld. Joining, 12(2007), No. 3, p. 217.
|