Cite this article as: |
Zhi-yuan Chen, Li-jun Wang, Xiao-jia Du, Zai-hong Sun, Fu-shen Li, and Kuo-Chih Chou, Carbon deposition in porous nickel/yttria-stabilized zirconia anode under methane atmosphere, Int. J. Miner. Metall. Mater., 26(2019), No. 3, pp. 350-359. https://doi.org/10.1007/s12613-019-1744-6 |
Li-jun Wang E-mail: lijunwang@ustb.edu.cn
[1] |
E.S. Hecht, G.K. Gupta, H.Y. Zhu, A.M. Dean, R.J. Kee, L. Maier, and O. Deutschmann, Methane reforming kinetics within a Ni-YSZ SOFC anode support, Appl. Catal. A, 295(2005), No. 1, p. 40.
|
[2] |
H. Sumi, Y.H. Lee, H. Muroyama, T. Matsui, and K. Eguchi, Comparison between internal steam and CO2 reforming of methane for Ni-YSZ and Ni-ScSZ SOFC anodes, J. Electrochem. Soc., 157(2010), No. 8, p. B1118.
|
[3] |
E.P. Murray, T. Tsai, and S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature, 400(1999), No. 6745, p. 649.
|
[4] |
S. Park, R. Craciun, J.M. Vohs, and R.J. Gorte, Direct oxidation of hydrocarbons in a solid oxide fuel cell:I. Methane oxidation, J. Electrochem. Soc., 146(1999), No. 10, p. 3603.
|
[5] |
S. Park, J.M. Vohs, and R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 404(2000), No. 6775, p. 265.
|
[6] |
T. Kim, S. Moon, and S.I. Hong, Internal carbon dioxide reforming by methane over Ni-YSZ-CeO2 catalyst electrode in electrochemical cell, Appl. Catal. A, 224(2002), No. 1-2, p. 111.
|
[7] |
I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, and A. Sodo, Ni/CeO2-Al2O3 catalysts for the dry reforming of methane:The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance, Appl. Catal. A, 500(2015), p. 12.
|
[8] |
J. Maček, B. Novosel, and M. Marinšek, Ni-YSZ SOFC anodes-Minimization of carbon deposition, J. Eur. Ceram. Soc., 27(2007), No. 2-3, p. 487.
|
[9] |
T. Takeguchi, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Y. Uchida, A. Ueno, K. Omoshiki, and M. Aizawa, Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets, J. Power Sources, 112(2002), No. 2, p. 588.
|
[10] |
H. Sumi, K. Ukai, Y. Mizutani, H. Mori, C.J. Wen, H. Takahashi, and O. Yamamoto, Performance of nickel-scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O-CH4, Solid State Ionics, 174(2004), No. 1-4, p. 151.
|
[11] |
K. Ke, A. Gunji, H. Mori, S. Tsuchida, H. Takahashi, K. Ukai, Y. Mizutani, H. Sumi, M. Yokoyama, and K. Waki, Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs, Solid State Ionics, 177(2006), No. 5-6, p. 541.
|
[12] |
H. Takahashi, T. Takeguchi, N. Yamamoto, M. Matsuda, E. Kobayashi, and W. Ueda, Effect of interaction between Ni and YSZ on coke deposition during steam reforming of methane on Ni/YSZ anode catalysts for an IR-SOFC, J. Mol. Catal. A, 350(2011), No. 1-2, p. 69.
|
[13] |
T. Horita, K. Yamaji, T. Kato, N. Sakai, and H. Yokokawa, Design of metal/oxide interfaces for the direct introduction of hydrocarbons into SOFCs, J. Power Sources, 131(2004), No. 1, p. 299.
|
[14] |
J. Kubota, S. Hashimoto, T. Shindo, K. Yashiro, T. Matsui, K. Yamaji, H. Kishimoto, and T. Kawada, Self-modification of Ni metal surfaces with CeO2 to suppress carbon deposition at solid oxide fuel cell anodes, Fuel Cells, 17(2017), No. 3, p. 402.
|
[15] |
Z.Y. Chen, L.Z. Bian, L.J. Wang, Z.Y. Yu, H.L. Zhao, F.S. Li, and K.C. Chou, Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850℃, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 574.
|
[16] |
H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, and J.R. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal., 209(2002), No. 2, p. 365.
|
[17] |
A. Oberlin, M. Endo, and T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth, 32(1976), No. 3, p. 335.
|
[18] |
Z.Y. Chen, L.J. Wang, Y.D. Gong, D. Tang, F.S. Li, and K.C. Chou, Effect of ozone on the performance of solid oxide fuel cell with Sm0.5Sr0.5CoO3 cathode, J. Power Sources, 255(2014), p. 59.
|
[19] |
Z. Cheng and M. Liu, Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy, Solid State Ionics, 178(2007), No. 13-14, p. 925.
|
[20] |
F. Li and J.S. Lannin, Disorder induced Raman scattering of nanocrystalline carbon, Appl. Phys. Lett., 61(1992), No. 17, p. 2116.
|
[21] |
W.S. Bacsa, J.S. Lannin, D.L. Pappas, and J.J. Cuomo, Raman scattering of laser-deposited amorphous carbon, Phys. Rev. B, 47(1993), No. 16, p. 10931.
|
[22] |
A.L. Pinheiro, A.N. Pinheiro, A. Valentini, J.M. Filho, F.F. de Sousa, J.R. de Sousa, C.R. M. da Graça, P. Bargiela, and A.C. Oliveira, Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane, Catal. Commun., 11(2009), No. 1, p. 11.
|
[23] |
A.E. Galetti, M.F. Gomez, L.A. Arrúa, and M.C. Abello, Ni catalysts supported on modified ZnAl2O4 for ethanol steam reforming, Appl. Catal. A, 380(2010), No. 1-2, p. 40.
|
[24] |
H.F. Abbas and W.M.A.W. Daud, Hydrogen production by methane decomposition:A review, Int. J. Hydrogen Energy, 35(2010), No. 3, p. 1160.
|
[25] |
C.M. Finnerty, N.J. Coe, R.H. Cunningham, and R.M. Ormerod, Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane, Catal. Today, 46(1998), No. 2-3, p. 137.
|
[26] |
M. Inoue, K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, and K. Ishii, Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600-750℃, Diamond Relat. Mater., 17(2008), No. 7-10, p. 1471.
|
[27] |
A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61(2000), No. 20, p. 14095.
|
[28] |
A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information, Carbon, 43(2005), No. 8, p. 1731.
|
[29] |
T. Jawhari, A. Roid, and J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 33(1995), No. 11, p. 1561.
|
[30] |
G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, and O. Paris, A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy, Carbon, 44(2006), No. 15, p. 3239.
|
[31] |
J.D. Herdman, B.C. Connelly, M.D. Smooke, M.B. Long, and J.H. Miller, A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames, Carbon, 49(2011), No. 15, p. 5298.
|
[32] |
F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53(1970), No. 3, p. 1126.
|
[33] |
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition, J. Appl. Phys., 97(2005), No. 10, p. 104320.
|
[34] |
D.S. Knight and W.B. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res., 4(1989), No. 2, p. 385.
|
[35] |
A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, and J.M.D. Tascón, Raman microprobe studies on carbon materials, Carbon, 32(1994), No. 8, p. 1523.
|
[36] |
C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel, 86(2007), No. 15, p. 2316.
|
[37] |
Y. Wang, D.C. Alsmeyer, and R.L. McCreery, Raman spectroscopy of carbon materials:structural basis of observed spectra, Chem. Mater., 2(1990), No. 5, p. 557.
|
[38] |
R.C. Maher, V. Duboviks, G.J. Offer, M. Kishimoto, N.P. Brandon, and L.F. Cohen, Raman spectroscopy of solid oxide fuel cells:Technique overview and application to carbon deposition analysis, Fuel Cells, 13(2013), No. 4, p. 455.
|
[39] |
J. Kuhn and O. Kesler, Method for in situ carbon deposition measurement for solid oxide fuel cells, J. Power Sources, 246(2014), p. 430.
|
[40] |
C. Su, Y.Z. Wu, W. Wang, Y. Zheng, R. Ran, and Z.P. Shao, Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel, J. Power Sources, 195(2010), No. 5, p. 1333.
|
[41] |
T. Skalar, E. Jelen, B. Novosel, and M. Marinšek, Oxidation of carbon deposits on anode material Ni-YSZ in solid oxide fuel cells, J. Therm. Anal. Calorim., 127(2017), No. 1, p. 265.
|
[42] |
Y. Kim, J.H. Kim, J. Bae, C.W. Yoon, and S.W. Nam, In situ analyses of carbon dissolution into Ni-YSZ anode materials, J. Phys. Chem. C, 116(2012), No. 24, p. 13281.
|
[43] |
N. Muradov, F. Smith, and A. T-Raissi, Catalytic activity of carbons for methane decomposition reaction, Catal. Today, 102-103(2005), p. 225.
|
[44] |
J.J. Cuomo, J.P. Doyle, J. Bruley, and J.C. Liu, Sputter deposition of dense diamond-like carbon films at low temperature, Appl. Phys. Lett., 58(1991), No. 5, p. 466.
|
[45] |
T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, and Y. Ikuhara, Atomic and electronic structures of Ni/YSZ (111) interface, Mater. Trans., 45(2004), No. 7, p. 2137.
|
[46] |
Y.F. Dong, S.J. Wang, J.W. Chai, Y.P. Feng, and C.H.A. Huan, Impact of interface structure on Schottky-barrier height for Ni/ZrO2(001) interfaces, Appl. Phys. Lett., 86(2005), No. 13, p. 132103.
|
[47] |
S. Kasamatsu, T. Tada, and S. Watanabe, First principles study of oxygen vacancies near nickel/zirconia interface, J. Surf. Sci. Nanotechnol., 8(2010), p. 93.
|
[48] |
A. Feinberg and C.H. Perry, Structural disorder and phase transitions in ZrO2-Y2O3 system, J. Phys. Chem. Solids, 42(1981), No. 6, p. 513.
|
[49] |
C. Li and M.J. Li, UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3-ZrO2 and SO42-/ZrO2, J. Raman Spectrosc., 33(2002), No. 5, p. 301.
|
[50] |
S. Karlin and P. Colomban, Phase diagram, short-range structure, and amorphous phases in the ZrO2-GeO2(-H2O) system, J. Am. Ceram. Soc., 82(1999), No. 3, p. 735.
|
[51] |
D.W. Liu, C.H. Perry, and R.P. Ingel, Infrared spectra in nonstoichiometric yttria-stabilized zirconia mixed crystals at elevated temperatures, J. Appl. Phys., 64(1988), No. 3, p. 1413.
|
[52] |
D.J. Kim, H.J. Jung, and I.S. Yang, Raman spectroscopy of tetragonal zirconia solid solutions, J. Am. Ceram. Soc., 76(1993), No. 8, p. 2106.
|
[53] |
J. Carrasco, L. Barrio, P. Liu, J.A. Rodriguez, and M.V. Ganduglia-Pirovano, Theoretical studies of the adsorption of CO and C on Ni(111) and Ni/CeO2(111):Evidence of a strong metal-support interaction, J. Phys. Chem. C, 117(2013), No. 16, p. 8241.
|