Cite this article as: |
Biplab Hazra, Supriya Bera, and Bijay Kumar Show, Enhanced elevated temperature wear resistance of Al-17Si-5Cu alloy after a novel short duration heat treatment, Int. J. Miner. Metall. Mater., 26(2019), No. 3, pp. 360-368. https://doi.org/10.1007/s12613-019-1745-5 |
Bijay Kumar Show E-mail: bijayshow@gmail.com
[1] |
V. Vijeesh and K.N. Prabhu, Review of microstructure evolution in hypereutectic Al-Si alloys and its effect on wear properties, Trans. Indian Inst. Met., 67(2014), No. 1, p. 1.
|
[2] |
M. Elmadagli, T. Perry, and A.T. Alpas, A parametric study of the relationship between microstructure and wear resistance of Al-Si alloys, Wear, 262(2007), No. 1-2, p. 79.
|
[3] |
J. Li, A. Elmadagli, V.Y. Gertsman, J. Lo, and A.T. Alpas, FIB and TEM characterization of subsurfaces of an Al-Si alloy (A390) subjected to sliding wear, Mater. Sci. Eng. A, 421(2006), No. 1-2, p. 317.
|
[4] |
M. Elmadagli and A.T. Alpas, Progression of wear in the mild wear regime of an Al-18.5%Si (A390) alloy, Wear, 261(2006), No. 3-4, p. 367.
|
[5] |
L. Lasa and J.M. Rodriguez-Ibabe, Wear behaviour of eutectic and hypereutectic Al-Si-Cu-Mg casting alloys tested against a composite brake pad, Mater. Sci. Eng. A, 363(2003), No. 1-2, p. 193.
|
[6] |
J. Clarke and A.D. Sarkar, Wear characteristics of as-cast binary aluminium-silicon alloys, Wear, 54(1979), No. 1, p. 7.
|
[7] |
R. Antoniou and D.W. Borland, Mild wear of Al-Si binary alloys during unlubricated sliding, Mater. Sci. Eng., 93(1987), p. 57.
|
[8] |
J. Zhang and A.T. Alpas, Delamination wear in ductile materials containing second phase particles, Mater. Sci. Eng. A, 160(1993), No. 1, p. 25.
|
[9] |
H. Torabian, J.P. Pathak, and S.N. Tiwari, Wear characteristics of Al-Si alloys, Wear, 172(1994), No. 1, p. 49.
|
[10] |
A.S. Reddy, B.N.P. Bai, K.S.S. Murthy, and S.K. Biswas, Wear and seizure of binary Al-Si alloys, Wear, 171(1994), No. 1-2, p. 115.
|
[11] |
A.R. Riah and A.T. Alpas, The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites, Wear, 251(2001), No. 1-12, p. 1396.
|
[12] |
A.R. Riahi, T. Perry, and A.T. Alpas, Scuffing resistances of Al-Si alloys:effects of etching condition, surface roughness and particle morphology, Mater. Sci. Eng. A, 343(2003), No. 1-2, p. 76.
|
[13] |
M. Elmadagli, T. Perry, and A.T. Alpas, A parametric study of the relationship between microstructure and wear resistance of Al-Si alloys, Wear, 262(2007), No. 1-2, p. 79.
|
[14] |
S.G. Shabestari and F. Shahri, Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy, J. Mater. Sci., 39(2004), No. 6, p. 2023.
|
[15] |
H.R. Ammar, C. Moreau, A.M. Samuel, F.H. Samuel, and H.W. Doty, Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al-Si casting alloys, Mater. Sci. Eng. A, 489(2008), No. 1-2, p. 426.
|
[16] |
D. Apelian, S. Shivkumar, and G. Sigworth, Fundamental aspects of heat treatment of cast Al-Si-Mg alloys, AFS Trans., 97(1989), p. 727.
|
[17] |
L. Lasa and J.M. Rodriguez-Ibabe, Effect of composition and processing route on the wear behaviour of Al-Si alloys, Scr. Mater., 46(2002), No. 6, p. 477.
|
[18] |
S. Kitaoka, C. Fujikura, and A. Kamio, Aluminum-silicon alloys. (Translation:MITS NF 431), J. Jpn. Inst. Light Met., 38(1988), No. 7, p. 426.
|
[19] |
J.Y. Yao, G.A. Edwards, and D.A. Graham, Precipitation and age-hardening in Al-Si-Cu-Mg-Fe casting alloys, Mater. Sci. Forum, 217-222(1996), p. 777.
|
[20] |
S. Shivkumar, C. Keller, and D. Apelian, Aging behavior in cast Al-Si-Mg alloys, AFS Trans., 98(1990), p. 905.
|
[21] |
D.L. Zhang and L. Zheng, The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy, Metall. Mater. Trans. A, 27(1996), No. 12, p. 3983.
|
[22] |
R.X. Li, R.D. Li, Y.H. Zhao, L.Z. He, C.X. Li, H.R. Guan, and Z.Q Hu, Age-hardening behavior of cast Al-Si base alloy, Mater. Lett, 58(2004), No. 15, p. 2096.
|
[23] |
A.M. Samuel, J. Gauthier, and F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment, Metall. Mater. Trans. A, 27(1996), No. 7, p. 1785.
|
[24] |
Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, and S. Valtierra, Effect of alloying elements on the segregation and dissolution of CuAl2 phase in Al-Si-Cu 319 alloys, J. Mater. Sci., 38(2003), No. 6, p. 1203.
|
[25] |
Y.M. Han, A.M. Samuel, F.H. Samuel, S. Valtierra, and H.W. Doty, Effect of solution heat treatment type on the dissolution of copper phases in Al-Si-Cu-Mg type alloys, AFS Trans., 116(2008), p. 79.
|
[26] |
N. Fathy, Microstructural Evolution of hyper-eutectic Al-18%Si alloy during semi-solid isothermal heat treatment,[in] International Conference on Research in Science, Engineering and Technology (ICRSET'2013), Bali, 2013, p. 2349.
|
[27] |
ASTM International, ASTM Standard E112-10:Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, 2010.
|
[28] |
N. Shukla, H. Roy, and B.K. Show, Tribological behavior of a 0.33% C dual-phase steel with pre I/C hardening and tempering treatment under abrasive wear condition, Tribol. Trans., 59(2016), No. 4, p. 593.
|
[29] |
ASTM International, ASTM Standard G99-05:Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, 2010.
|
[30] |
M.F. Ibrahim, E. Samuel, A.M. Samuel, A.M.A. Al-Ahmari, and F.H. Samuel, Metallurgical parameters controlling the microstructure and hardness of Al-Si-Cu-Mg base alloys, Mater. Des., 32(2011), No. 4, p. 2130.
|
[31] |
F.H. Samuel, Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al-Si-Cu-Mg (319) alloys during solution heat treatment, J. Mater. Sci., 33(1998), No. 9, p. 2283.
|
[32] |
Y.M. Han, A.M. Samuel, F.H. Samuel, and H.W. Doty, Dissolution of Al2Cu phase in non-modified and Sr modified 319 type alloys, Int. J. Cast Met. Res., 21(2008), No. 5, p. 387.
|
[33] |
S. Kumar, V.S. Sarma, and B.S. Murty, The influence of room temperature and cryogenic temperature rolling on the aging and wear behaviour of Al-Cu-5TiB2 in-situ composites, J. Alloys Compd., 479(2009), No. 1-2, p. 268.
|
[34] |
S. Kumar, V.S. Sarma, and B.S. Murty, Effect of temperature on the wear behavior of Al-7Si-TiB2 in-situ composites, Metall. Mater. Trans. A, 40(2009), No. 1, p. 223.
|
[35] |
S. Kumar, V.S. Sarma, and B.S. Murty, High temperature wear behaviour of Al-4CuTiB2in-situ composites, Wear, 268(2010), No. 11-12, p. 1266.
|
[36] |
J.C. Harkness, W.D. Spiegelberg, W.R. Cribb, Beryllium-copper and other beryllium-containing alloys,[in] ASM Handbook Volume 2:Properties and Selection:Non-ferrous Alloys and Special-Purpose Materials, ASM International, Ohio, 1990, p. 426.
|
[37] |
ASM International, ASM Ready Reference:Thermal Properties of Metals, F. Cverna, ed., ASM International, Ohio, 2002, p. 426.
|
[38] |
B.K. Show, D.K. Mondal, and J. Maity, Wear behavior of a novel aluminum-based hybrid composite, Metall. Mater. Trans. A, 45(2014), No. 2, p. 1027.
|
[39] |
S. Kumar, A. Bhattacharyya, D.K. Mondal, K. Biswas, and J. Maity, Dry sliding wear behaviour of medium carbon steel against an alumina disk, Wear, 270(2011), No. 5-6, p. 413.
|