Cite this article as: |
Ahmed Nmiri, Myriam Duc, Noureddine Hamdi, Oumaya Yazoghli-Marzouk, and Ezzeddine Srasra, Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers, Int. J. Miner. Metall. Mater., 26(2019), No. 5, pp. 555-564. https://doi.org/10.1007/s12613-019-1764-2 |
Ahmed Nmiri E-mail: nmiriahmed@gmail.com
[1] |
M. Mustafa, A. Bakri, H. Mohammed, H. Kamarudin, I.K. Niza, and Y. Zarina, Review on fly ash-based geopolymer concrete without Portland Cement, J. Eng. Technol. Res., 3(2011), No. 1, p. 1.
|
[2] |
M.A. Villaquirán-caicedo, R.M. de Gutiérrez, S. Sulekar, C. Davis, and J.C. Nino, Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources, Appl. Clay Sci., 118(2015), p. 276.
|
[3] |
J. Davidovits, Properties of geopolymer cements,[in] First International Conference on Alkaline Cements and Concretes, Kiev, 1994, p. 131.
|
[4] |
H.T. Huynh, New generation geopolymers,[in] 2nd French Seminar on Geopolymers, Clermont-Ferrand, 2013.
|
[5] |
Y.M. Liew, C.Y. Heah, A.B. Mohd Mustafa, and H. Kamarudin, Structure and properties of clay-based geopolymer cements:A review, Prog. Mater. Sci., 83(2016), p. 595.
|
[6] |
P. Zhang, Y.X. Zheng, K.J. Wang, and J.P. Zhang, A review on properties of fresh and hardened geopolymer mortar, Composites Part B, 152(2018), p. 79.
|
[7] |
C. Dupuy, A. Gharzouni, N. Texier-Mandoki, X. Bourbon, and S. Rossignol, Thermal resistance of argillite-based alkali-activated materials. Part 1:Effect of calcination processes and alkali cation, Mater. Chem. Phys., 217(2018), p. 323.
|
[8] |
M.I. Khan, H.U. Khan, K. Azizli, S. Sufian, Z. Man, A.A. Siyal, N. Muhammad, and M.F. ur Rehman, The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin, Appl. Clay Sci., 146(2017), p. 152.
|
[9] |
J.S. Geng and Q. Sun, Effects of high temperature treatment on physical-thermal properties of clay, Thermochim. Acta, 666(2018), p. 148.
|
[10] |
V. Medri, S. Fabbri, J. Dedecek, Z. Sobalik, Z. Tvaruzkova, and A. Vaccari, Role of the morphology and the dehydroxylation of metakaolins on geopolymerization, Appl. Clay Sci., 50(2010), No. 4, p. 538.
|
[11] |
Y.M. Liew, H. Kamarudin, A.M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, and C.Y. Heah, Processing and characterization of calcined kaolin cement powder, Constr. Build. Mater., 30(2012), p. 794.
|
[12] |
Y.M. Liew, H. Kamarudin, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, and C.Y. Heah, Influence of solids-to-liquid and activator ratios on calcined kaolin cement powder, Phys. Procedia, 22(2011), p. 312.
|
[13] |
C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, and Y.M. Liew, Kaolin-based geopolymers with various NaOH concentrations, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 313.
|
[14] |
P. De Silva, K. Sagoe-Crenstil, and V. Sirivivatnanon, Kinetics of geopolymerization:Role of Al2O3 and SiO2, Cem. Concr. Res., 37(2007), No. 4, p. 512.
|
[15] |
F.N. Okoye, J. Durgaprasad, and N.B. Singh, Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete, Ceram. Int., 42(2015), No. 2, p. 3000.
|
[16] |
D. Dutta, S. Thokchom, P. Ghosh, and S. Ghosh, Effect of silica fume additions on porosity of fly ash geopolymers, J. Eng. Appl. Sci., 5(2010), No. 10, p. 74.
|
[17] |
C.S. Poon, S.C. Kou, and L. Lam, Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete, Constr. Build. Mater., 20(2006), No. 10, p. 858.
|
[18] |
P. Duan, C.J. Yan, and W. Zhou, Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle, Cem. Concr. Compos., 78(2017), p. 108.
|
[19] |
M. Uysal, M.M. Al-mashhadani, Y. Aygörmez, and O. Canpolat, Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars, Constr. Build. Mater., 176(2018), p. 271.
|
[20] |
B.A. Latella, D.S. Perera, D. Durce, E.G. Mehrtens, and J. Davis, Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al≈2 and Na/Al≈1, J. Mater. Sci., 43(2008), No. 8, p. 2693.
|
[21] |
M. Rostami and K. Behfarnia, The effect of silica fume on durability of alkali activated slag concrete, Constr. Build. Mater., 134(2017), p. 262.
|
[22] |
D. Panias, I.P. Giannopoulou, and T. Perraki, Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, Colloids Surf. A, 301(2007), No. 1-3, p. 246.
|
[23] |
Z.H. Zhang, X. Yao, H.J. Zheng, and C. Yue, Role of water in the synthesis of calcined kaolin-based geopolymer, Appl. Clay Sci., 43(2009), No. 2, p. 218.
|
[24] |
J.G.S. van Jaarsveld and J.S.J. van Deventer, Effect of the alkali metal activator on the properties of fly ash based geopolymers, Ind. Eng. Chem. Res., 38(1999), No. 10, p. 3932.
|
[25] |
P.N. Lemougna, A.B. Madi, E. Kamseu, U.C. Melo, M.P. Delplancke, and H. Rahier, Influence of the processing temperature on the compressive strength of Na activated lateritic soil for building applications, Constr. Build. Mater., 65(2014), p. 60.
|
[26] |
A.M.M. Al Bakri, H. Kamarudin, M. Bnhussain, J. Liyana, and C.M. Ruzaidi Ghazali, Nano geopolymer for sustainable concrete using fly ash synthesized by high energy ball milling, Appl. Mech. Mater., 313-314(2013), p. 169.
|
[27] |
S.A. Bernal, E.D. Rodríguez, R. Mejía de Gutiérrez, M. Gordillo, and J.L. Provis, Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends, J. Mater. Sci., 46(2011), No. 16, p. 5477.
|
[28] |
T. Revathi, R. Jeyalakshmi, and N. P. Rajamane, Study on the role of n-SiO2 incorporation in thermo-mechanical and microstructural properties of ambient cured FA-GGBS geopolymer matrix, Appl. Surf. Sci., 449(2018), p. 322.
|
[29] |
C. Kuenzel, L.M. Grover, L. Vandeperre, A.R. Boccaccini, and C.R. Cheeseman, Production of nepheline/quartz ceramics from geopolymer mortars, J. Eur. Ceram. Soc., 33(2013), No. 2, p. 251.
|
[30] |
G. Kakali, T. Perraki, S. Tsivilis, and E. Badogiannis, Thermal treatment of kaolin:The effect of mineralogy on the pozzolanic activity, Appl. Clay Sci., 20(2001), No. 1-2, p. 73.
|
[31] |
S. Ahmari, X. Ren, V. Toufigh, and L.Y. Zhang, Production of geopolymeric binder from blended waste concrete powder and fly ash, Constr. Build. Mater., 35(2012), p. 718.
|
[32] |
W.K.W. Lee and J.S.J. van Deventer, Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates, Langmuir, 19(2003), No. 21, p. 8726.
|
[33] |
Q. Wan, F. Rao, S.X. Song, D.F. Cholico-González, and N.L. Ortiz, Combination formation in the reinforcement of metakaolin geopolymers with quartz sand, Cem. Concr. Compos., 80(2017), p. 115.
|
[34] |
K. Gao, K.L. Lin, D.Y. Wang, H.S. Shiu, C.L. Hwang, and T.W. Cheng, Effects of nano-SiO2 on setting time and compressive strength of alkali-activated metakaolin-based geopolymer, Open Civ. Eng. J., 7(2013), p. 84.
|
[35] |
W.K.W. Lee and J.S.J. van Deventer, Structural reorganisation of class F fly ash in alkaline silicate solutions, Colloids Surf. A, 211(2002), No. 1, p. 49.
|
[36] |
T. Bakharev, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cem. Concr. Res., 35(2005), No. 6, p. 1224.
|
[37] |
J. Rocha and J. Klinowski, 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite, Phys. Chem. Miner., 17(1990), No. 2, p. 179.
|
[38] |
P.S. Singh, M. Trigg, I. Burgar, and T. Bastow, Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR, Mater. Sci. Eng. A, 396(2005), No. 1-2, p. 392.
|
[39] |
F.Škvára, L. Kopecký, J. Němeče k, and Z. Bittnar, Microstructure of geopolymer materials based on fly ash, Ceram. Silik., 50(2006), No. 4, p. 208.
|
[40] |
A. Bourlon, Physico-chimie et Rhéologie de Géopolymères Frais Pour la Cimentation des Puits Pétroliers[Dissertation], Pierre et Marie Curie University, Paris, 2010.
|
[41] |
M.A. Soleimani, R. Naghizadeh, A.R. Mirhabibi, and F. Golestanifard, Effect of calcination temperature of the kaolin and molar Na2O/SiO2 activator ratio on physical and microstructural properties of metakaolin based geopolymers, Iran. J. Mater. Sci. Eng., 9(2012), No. 4, p. 43.
|
[42] |
P. Chindaprasirt, T. Chareerat, and V. Sirivivatnanon, Workability and strength of coarse high calcium fly ash geopolymer, Cem. Concr. Compos., 29(2007), No. 3, p. 224.
|
[43] |
Y.S. Zhang, W. Sun, and Z.J. Li, Composition design and microstructural characterization of calcined kaolin-based geopolymer cement, Appl. Clay Sci., 47(2010), No. 3-4, p. 271.
|
[44] |
C.K. Ma, A.Z. Awang, and W. Omar, Structural and material performance of geopolymer concrete:A review, Constr. Build. Mater., 186(2018), p. 90.
|
[45] |
T. da S. Rocha, D.P. Dias, F.C.C. França, R.R. de S. Guerra, and L.R. da C. de O. Marques, Metakaolin-based geopolymer mortars with different alkaline activators (Na+and K+), Constr. Build. Mater., 178(2018), p. 453.
|
[46] |
P. Duan, Z.G. Shui, W. Chen, and C.H. Shen, Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete, Constr. Build. Mater., 44(2013), p. 1.
|