Nanoscale electropolishing of high-purity nickel with an ionic liquid

Jon Derek Loftis, Tarek M. Abdel-Fattah

分享

计量
  • 文章访问数:  689
  • HTML全文浏览量:  175
  • PDF下载量:  31
  • 被引次数: 0

目录

Cite this article as:

Jon Derek Loftis, and Tarek M. Abdel-Fattah, Nanoscale electropolishing of high-purity nickel with an ionic liquid, Int. J. Miner. Metall. Mater., 26(2019), No. 5, pp.649-656. https://dx.doi.org/10.1007/s12613-019-1773-1
Jon Derek Loftis, and Tarek M. Abdel-Fattah, Nanoscale electropolishing of high-purity nickel with an ionic liquid, Int. J. Miner. Metall. Mater., 26(2019), No. 5, pp.649-656. https://dx.doi.org/10.1007/s12613-019-1773-1
引用本文 PDF XML SpringerLink
研究论文

Nanoscale electropolishing of high-purity nickel with an ionic liquid

    通信作者:

    Tarek M. Abdel-Fattah E-mail: fattah@cnu.edu

High purity (>99.9% composition) nickel metal specimens were used in electropolishing treatments with an acid-free ionic liquid electrolyte prepared from quaternary ammonium salts as a green polishing solution. Voltammetry and chronoamperometry tests were conducted to determine the optimum conditions for electrochemical polishing. Atomic force microscopy (AFM) revealed nanoscale effectiveness of each polishing treatment. Atomic force microscopy provided an overall observation of the material interface between the treated and unpolished regions. Surface morphology comparisons summarized electrochemical polishing efficiency by providing root-mean-square roughness averages before and after electrochemical polishing to reveal a mirror finish six times smoother than the same nickel metal surface prior to electropolishing. This transition manifested in a marked change in root-mean-squared roughness from 112.58 nm to 18.64 nm and producing a smooth mirror finish. Finally, the mechanism of the ionic liquid during electropolishing revealed decomposition of choline in the form of a transient choline radical by acceptance of an electron from the nickel-working electrode to decompose to trimethylamine and ethanol.

 

Research Article

Nanoscale electropolishing of high-purity nickel with an ionic liquid

Author Affilications
  • Received: 10 August 2018; Revised: 13 January 2019; Accepted: 14 January 2019;
High purity (>99.9% composition) nickel metal specimens were used in electropolishing treatments with an acid-free ionic liquid electrolyte prepared from quaternary ammonium salts as a green polishing solution. Voltammetry and chronoamperometry tests were conducted to determine the optimum conditions for electrochemical polishing. Atomic force microscopy (AFM) revealed nanoscale effectiveness of each polishing treatment. Atomic force microscopy provided an overall observation of the material interface between the treated and unpolished regions. Surface morphology comparisons summarized electrochemical polishing efficiency by providing root-mean-square roughness averages before and after electrochemical polishing to reveal a mirror finish six times smoother than the same nickel metal surface prior to electropolishing. This transition manifested in a marked change in root-mean-squared roughness from 112.58 nm to 18.64 nm and producing a smooth mirror finish. Finally, the mechanism of the ionic liquid during electropolishing revealed decomposition of choline in the form of a transient choline radical by acceptance of an electron from the nickel-working electrode to decompose to trimethylamine and ethanol.

 

  • N.V. Plechkova and K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37(2008), No. 1, p. 123.

    G. Palumbo and K.T. Aust, Structure-dependence of intergranular corrosion in high purity nickel, Acta Metall. Mater., 38(1990), No. 11, p. 2343.

    W. Han and F.Z. Fang, Fundamental aspects and recent developments in electropolishing, Int. J. Mach. Tools Manuf., 139(2019), p. 1.

    M. Chen, W.L. Ao, C.S. Dai, T. Tao, and J. Yang, Synthesis and electrochemical properties of LiNi0.8Al0.2-xTixO2 cathode materials by an ultrasonic-assisted co-precipitation method, Int. J. Miner. Metall. Mater., 16(2009), No. 4, p. 452.

    C. Ding, K.W. Gao, and C.F. Chen, Effect of Ca2+ on CO2 corrosion properties of X65 pipeline steel, Int. J. Miner. Metall. Mater., 16(2009), No. 6, p. 661.

    A.I. Wixtrom, J.E. Buhler, C.E. Reece, and T.M. Abdel-Fattah, Electrochemical polishing applications and EIS of a vitamin B4-based ionic liquid, J. Electrochem. Soc., 160(2013), No. 3, p. E22.

    T.M. Abdel-Fattah, J.D. Loftis, and A. Mahapatro, Nanoscale electrochemical polishing and preconditioning of biometallic nickel-titanium alloys, Nanosci. Nanotechnol., 5(2015), No. 2, p. 36.

    J.C. Rajaguru, M. Duke, and C. Au, Investigation of electroless nickel plating on rapid prototyping material of acrylic resin, Rapid Prototyping J., 22(2016), No. 1, p. 162.

    R. Ohara, C.H. Lan, and C.S. Hwang, Electrochemical and structural characterization of electroless nickel coating on Mg2Ni hydrogen storage alloy, J. Alloys Compd., 580(2013), p. S368.

    T. Kume, S. Egawa, G. Yamaguchi, and H. Mimura, Influence of residual stress of electrodeposited layer on shape replication accuracy in Ni electroforming, Procedia CIRP, 42(2016), p. 783.

    M.H. Liu, Y. Meng, Y. Zhao, F.H. Li, Y.L. Gong, and L. Feng, Electropolishing parameters optimization for enhanced performance of nickel coating electroplated on mild steel, Surf. Coat. Technol., 286(2016), p. 285.

    A.I. Wixtrom, J.E. Buhler, C.E. Reece, and T.M. Abdel-Fattah, Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities, J. Environ. Chem. Eng., 1(2013), No. 1-2, p. 18.

    T.M. Abdel-Fattah and J.D. Loftis, Surface characterization of high purity metals of silver and nickel electropolished with an ionic liquid, ECS Trans., 25(2010), No. 39, p. 57.

    T.M. Abdel-Fattah, J.D. Loftis, and A. Mahapatro, Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel, J. Biomed. Nanotechnol., 7(2010), No. 6, p. 794.

    T.M. Abdel-Fattah, J.D. Loftis, and A. Mahapatro, Nanoscale surface pretreatment of biomedical Co-Cr alloy, J. Surf. Interfaces Mater., 3(2015), No. 1, p. 67.

    G.J. Janz, Molten Salts Handbook, Elsevier, 2013, p. 558.

    T.M. Abdel-Fattah and J.D. Loftis, Comparison of the electrochemical polishing of copper and aluminum in acid and acid-free media, ECS Trans., 25(2009), No. 7, p. 327.

    T.M. Abdel-Fattah, J.D. Loftis, and A. Mahapatro, Ionic liquid electropolishing of metal alloys for biomedical applications, ECS Trans., 25(2010), No. 19, p. 57.

    T. Dushatinski, C. Huff, and T.M. Abdel-Fattah, Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions, Appl. Surf. Sci., 385(2016), p. 282.

    A.P. Abbott and K.J. McKenzie, Application of ionic liquids to the electrodeposition of metals, Phys. Chem. Chem. Phys., 37(2006), No. 8, p. 4265.

    A.P. Abbott, G. Frisch, J. Hartley, W.O. Karim, and K.S. Ryder, Anodic dissolution of metals in ionic liquids, Prog. Nat. Sci., 25(2015), No. 6, p. 595.

    A.P. Abbott, A. Ballantyne, R.C. Harris, J.A. Juma, K.S. Ryder, and G. Forrest, A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions, Electrochim. Acta, 176(2015), p. 718.

    E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, and H.H. Soliman, Roughness parameters, J. Mater. Process. Technol., 123(2002), No. 1, p. 133.

    R.R.L. DeOliveira, D.A.C. Albuquerque, T.G.S. Cruz, F.M. Yamaji, and F.L. Leite, Measurement of the nanoscale roughness by atomic force microscopy:basic principles and applications,[in] Victor Bellitto eds., Atomic Force Microscopy, Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, InTech, Croatia, 2012, p. 147.

    J.D. Loftis and T.M. Abdel-Fattah, Nanoscale electropolishing of high purity silver with a deep eutectic solvent, Colloid Surf. A, 551(2016), p. 113.

    A.J. Bard and L.R. Faulkner, Electrochemical Methods:Fundamentals and Application, John Wiley and Sons Publishing, New York, 1980, p. 864.

    M. Lambrechts and W.M.C. Sansen, Biosensors:Microelectrochemical Devices, CRC Press, Leuven, Belgium, 1992, p. 1.

    J. Dufour, An Introduction to Metallurgy, 5th ed., Cameron, 2006, p. 23.

    O. Lebedeva, I. Kudryavtsev, D. Kultin, G. Dzhungurova, K. Kalmykov, and L. Kustov, Self-organized hexagonal nanostructures on nickel and steel formed by anodization in 1-Butyl-3-methylimidazolium bis (triflate) imide ionic liquid, J. Phys. Chem., 118(2014), No. 36, p. 21293.

    A.P. Abbott, G. Frisch, K.S. Ryder, Electroplating using ionic liquids, Ann. Rev. Mater. Res., 43(2013), No. 1, p. 335.

    R.X. Wu, Y.M. Dong, P.P. Jiang, G.L. Wang, Y.M. Chen, and X.M. Wu, Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation, Prog. Nat. Sci., 26(2016), No. 3, p. 303.

    K. Haerens, E. Matthijs, A. Chmielarz, and B. Van der Bruggen, The use of ionic liquids based on choline chloride for metal deposition:a green alternative?, J. Environ. Manage., 90(2009), 11, p. 3245.

    K. Haerens, E. Matthijs, K. Binnemans, and B. Van der Bruggen, Electrochemical decomposition of choline chloride based ionic liquid analogues, Green Chem., 11(2009), No. 9, p. 1357.

Relative Articles

Jing-ling Zhang, Qian-ying Guo, Yong-chang Liu, Chong Li, Li-ming Yu, Hui-jun Li. Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-016-1326-9

View details

Ying-hui Zhou, Chen-xi Liu, Yong-chang Liu, Qian-ying Guo, Hui-jun Li. Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-016-1237-9

View details

Xue Yang, Lan Sun, Ji Xiong, Ping Zhou, Hong-yuan Fan, Jian-yong Liu. Effect of aging temperature on the microstructures and mechanical properties of ZG12Cr9Mo1Co1NiVNbNB ferritic heat-resistant steel [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-016-1224-1

View details

Lei Wang, Yao Wang, Yang Liu, Xiu Song, Xu-dong Lü, Bei-jiang Zhang. Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-013-0807-3

View details

Xue-xia Xu, Yang Yu, Wen-long Cui, Bing-zhe Bai, Jia-lin Gu. Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex microstructure [J]. 矿物冶金与材料学报(英文版). DOI: 10.1016/S1674-4799(09)60051-0

View details

Yanli Lu, Zheng Chen, Yongxin Wang, Yongsheng Li. Microscopic phase-field simulation of the coarsening behavior of coherent precipitates in Ni-Al alloys [J]. 矿物冶金与材料学报(英文版). DOI: 10.1016/S1005-8850(08)60031-6

View details

Yongsheng Li, Zheng Chen, Yungang Li, Yanli Lu, Yongxin Wang. Simulation of the precipitation process of Ni75AlxV25-x alloys incorporated in the microelasticity field [J]. 矿物冶金与材料学报(英文版). DOI: 10.1016/S1005-8850(07)60013-9

View details

Baofeng Ding, Yinshun Wu, Bei Cao, Salih Hmida Abubakir, Jianhui Xie. Martensite transformation induced by deformation and its phase electrochemical behavior for stainless steels AISI 304 and 316L [J]. 矿物冶金与材料学报(英文版).

View details

Benfu Hu, Quanmao Yu, Lin Lu, Chengchang Jia, Hiroshi Kinoshita, Heishichiro Takahashi. High temperature strength and ductility of the (C+N) strengthening Fe-Cr-Mn(W, V) steels [J]. 矿物冶金与材料学报(英文版).

View details

/

返回文章
返回