留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 6
Jun.  2019
数据统计

分享

计量
  • 文章访问数:  523
  • HTML全文浏览量:  95
  • PDF下载量:  12
  • 被引次数: 0
Shu-mei Chen, Chun-fa Liao, Jue-yuan Lin, Bo-qing Cai, Xu Wang, and Yun-fen Jiao, Electrical conductivity of molten LiF-DyF3-Dy2O3-Cu2O system for Dy-Cu intermediate alloy production, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 701-709. https://doi.org/10.1007/s12613-019-1775-z
Cite this article as:
Shu-mei Chen, Chun-fa Liao, Jue-yuan Lin, Bo-qing Cai, Xu Wang, and Yun-fen Jiao, Electrical conductivity of molten LiF-DyF3-Dy2O3-Cu2O system for Dy-Cu intermediate alloy production, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 701-709. https://doi.org/10.1007/s12613-019-1775-z
引用本文 PDF XML SpringerLink
研究论文

Electrical conductivity of molten LiF-DyF3-Dy2O3-Cu2O system for Dy-Cu intermediate alloy production

  • 通讯作者:

    Chun-fa Liao    E-mail: Liaochfa@163.com

  • Dy-Cu intermediate alloys have shown substantial potential in the field of magnetostrictive and magnetic refrigerant materials. Therefore, this study focused on investigating the electrical conductivity of molten-salt systems for the preparation of Dy-Cu alloys and on optimizing the corresponding operating parameters. The electrical conductivity of molten LiF-DyF3-Dy2O3-Cu2O systems was measured from 910 to 1030℃ using the continuously varying cell constant method. The dependencies of the LiF-DyF3-Dy2O3-Cu2O system conductivity on the melt composition and temperature were examined herein. The optimal operating conditions for Dy-Cu alloy production were determined via analyses of the electrical conductivity and activation energies for conductance, which were calculated using the Arrhenius equation. The conductivity of the molten system regularly increases with increasing temperature and decreases with increasing concentration of Dy2O3 or Cu2O or both. The activation energy Eκ of the LiF-DyF3-Dy2O3 and LiF-DyF3-Cu2O molten-salt systems increases with increasing Dy2O3 or Cu2O content. The regression functions of conductance as a function of temperature (t) and the addition of Dy2O3 (W(Dy2O3)) and Cu2O (W(Cu2O)) can be expressed as κ=-2.08435 + 0.0068t-0.18929W(Dy2O3)-0.07918W(Cu2O). The optimal electrolysis conditions for preparing the Dy-Cu alloy in LiF-DyF3-Dy2O3-Cu2O molten salt are determined to be 2.0wt% ≤ W(Dy2O3) + W(Cu2O) ≤ 3.0wt% and W(Dy2O3):W(Cu2O)=1:2 at 970 to 1000℃.
  • Research Article

    Electrical conductivity of molten LiF-DyF3-Dy2O3-Cu2O system for Dy-Cu intermediate alloy production

    + Author Affiliations
    • Dy-Cu intermediate alloys have shown substantial potential in the field of magnetostrictive and magnetic refrigerant materials. Therefore, this study focused on investigating the electrical conductivity of molten-salt systems for the preparation of Dy-Cu alloys and on optimizing the corresponding operating parameters. The electrical conductivity of molten LiF-DyF3-Dy2O3-Cu2O systems was measured from 910 to 1030℃ using the continuously varying cell constant method. The dependencies of the LiF-DyF3-Dy2O3-Cu2O system conductivity on the melt composition and temperature were examined herein. The optimal operating conditions for Dy-Cu alloy production were determined via analyses of the electrical conductivity and activation energies for conductance, which were calculated using the Arrhenius equation. The conductivity of the molten system regularly increases with increasing temperature and decreases with increasing concentration of Dy2O3 or Cu2O or both. The activation energy Eκ of the LiF-DyF3-Dy2O3 and LiF-DyF3-Cu2O molten-salt systems increases with increasing Dy2O3 or Cu2O content. The regression functions of conductance as a function of temperature (t) and the addition of Dy2O3 (W(Dy2O3)) and Cu2O (W(Cu2O)) can be expressed as κ=-2.08435 + 0.0068t-0.18929W(Dy2O3)-0.07918W(Cu2O). The optimal electrolysis conditions for preparing the Dy-Cu alloy in LiF-DyF3-Dy2O3-Cu2O molten salt are determined to be 2.0wt% ≤ W(Dy2O3) + W(Cu2O) ≤ 3.0wt% and W(Dy2O3):W(Cu2O)=1:2 at 970 to 1000℃.
    • loading
    • [1]
      S.M. Pang, Z.Q. Wang, L. Zhou, B.Y. Chen, L.H. Xu, B. Zhao, S.H. Yan, and Z.A. Li, Study on preparation of high-purified terbium and dysprosium metals used for rare earth giant magnetostrictive materials, Chin. Rare Earths, 29(2008), No. 6, p. 31.
      [2]
      F.D. Liu, Y. Su, Y.Q. Chen, Y.F. Xiong, and X.F. Yi, Investigation and development of NdFeB magnets with excellent magnetic properties and stability of temperature, Met. Funct. Mater., 17(2010), No. 3, p. 5.
      [3]
      L.Q. Yu, X.G. Cui, W. Luo, and M. Yan, Influence of Cu and Gd on thermal stability and magnetic properties of Nd(DyAl)FeB magnets, J. Zhejiang Univ. Eng. Sci., 39(2005), No. 8, p. 1251.
      [4]
      S.M. Pang, S.H. Yan, Z.A. Li, D.H. Chen, L.H. Xu, and B. Zhao, Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China, Chin. J. Rare Met., 35(2011), No. 3, p. 440.
      [5]
      G.K. Liu, Y.X. Tong, H.C. Hong, S.Y. Chen, and L. Gan, Studies on the preparation of Dy-Cu alloy in chloride melt by molten salt electrolysis, Acta Metall. Sinica, 32(1996), No. 12, p. 1252.
      [6]
      A. Saïla, M. Gibilaro, L. Massot, P. Chamelot, P. Taxil, and A.M. Affoune, Electrochemical behavior of dysprosium( ) Ⅲ in LiF-CaF2 on Mo, Ni and Cu electrodes, J. Electroanal. Chem., 642(2010), No. 2, p. 150.
      [7]
      H. Konishi, H. Ono, E. Takeuchi, T. Nohira, and T. Oishi, Electrochemical formation of RE-Cu (RE = Dy, Nd) alloys in a molten LiCl-KCl system, ECS Trans., 53(2013), No. 11, p. 37.
      [8]
      K.S. Mohandas, N. Sanil, and P. Rodriguez, Development of a high temperature conductance cell and electrical conductivity measurements of MAlCl4(M = Li, Na and K) melts, Miner. Process. Extr. Metall., 115(2006), No. 1, p. 25.
      [9]
      H.M. Kan, Z.W. Wang, Y.G. Ban, Z.N. Shi, and Z.X. Qiu, Electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system electrolyte, Trans. Nonferrous Met. Soc. China, 17(2007), No. 1, p. 181.
      [10]
      L.Y. Chen, Research on Physical and Chemical Properties of LiF-NdF3-Nd2O3 Molten Salt System [Dissertation], East China University of Science and Technology, Shanghai, 2015, p. 2.
      [11]
      X.J. Lv, S.Y. Chen, Z.L. Tian, Y.Q. Lai, and J. Li, Review on the physical-chemical properties of the Na3AlF6-K3AlF6-AlF3 molten salt system, Light Met., 2013, No. 8, p. 29.
      [12]
      V. Daněk, Physical and Chemical Analysis of Molten Electrolyte, B.L. Gao, X.W. Hu, Z.N. Shi, and Z.W. Wang, translated, Metallurgical Industry Press, Beijing, 2014, p. 54.
      [13]
      X.W. Hu, Z.W. Wang, B.L. Gao, and Z.N. Shi, Study on the electrical conductivity of NdF3-LiF-Nd2O3 system melts determined by CVCC technique, J. Northeastern Univ. Nat. Sci., 29(2008), No. 9, p. 1294.
      [14]
      Q.S. Wu, Electrical conductivity and neodymium solubility of Nd2O3-NdF3-LiF fusion salt system, Rare Met. Cem. Carbides, 34(2006), No. 1, p. 52.
      [15]
      C.F. Liao, H. Tang, X. Wang, L.S. Luo, and M.Z. Fang, Study on electrical conductivity of Na3AlF6-AlF3-LiF-MgF2-Al2O3-Nd2O3-CuO molten salt system, Rare Met. Cem. Carbides, 44(2016), No. 1, p. 60.
      [16]
      M. Bao, Z.W. Wang, B.L. Gao, Z.N. Shi, X.W. Hu, and J.Y. Yu, Electrical conductivity of NaF-AlF3-Al2O3-CaF2-ZrO2 molten salts, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3788.
      [17]
      C.F. Liao, Y.F. Jiao, X. Wang, B.Q. Cai, Q.C. Sun, and T. Hao, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1034.
      [18]
      K. Grjotheim, R. Nikolic, and H.A. Øye, Electrical conductivities of binary and ternary melts between MgCl2, CaCl2, NaCl, and KCl, Acta Chem. Scand., 24(1970), No. 2, p. 489.
      [19]
      R. Guo. Study of Al–Sc Alloy Prepared by Molten Salt Electrolysis Method [Dissertation], Northeastern University, Shenyang, 2009, p. 27.
      [20]
      X.F. He, Y.G. Li, and Z.H. Li, Research on conductivity of KCl-NaCl-NaF-SiO2 molten salt system, Hydrometall. China, 29(2010), No. 1, p. 12.
      [21]
      X. Guo, J. Sietsma, and Y.X. Yang, A critical evaluation of solubility of rare earth oxides in molten fluorides,[in] I.B.D. Lima, and W.L. Filho eds., Rare Earths Industry: Technological, Economic and Environmental Implications, Elsevier, 2015, p. 223-234.
      [22]
      B.L. Gao, F.G. Liu, Z.W. Wang, and Z.N. Shi, Study on electrical conductivity of the molten salts of KNO3-NaNO2-NaNO3 ternary system, J. Northeastern Univ. Nat. Sci., 31(2010), No. 5, p. 696.

    Catalog


    • /

      返回文章
      返回