留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 6
Jun.  2019
数据统计

分享

计量
  • 文章访问数:  659
  • HTML全文浏览量:  138
  • PDF下载量:  12
  • 被引次数: 0
Keemi Lim, Wen Shyang Chow,  and Swee Yong Pung, Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 787-795. https://doi.org/10.1007/s12613-019-1781-1
Cite this article as:
Keemi Lim, Wen Shyang Chow,  and Swee Yong Pung, Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 787-795. https://doi.org/10.1007/s12613-019-1781-1
引用本文 PDF XML SpringerLink
研究论文

Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach

  • The aim of this study was to synthesize and evaluate the thermal properties and ultraviolet (UV) resistance of zinc oxide-functionalized halloysite nanotubes (HNT-ZnO). The HNT-ZnO was synthesized using a facile solvent-free route. The properties of the HNT-ZnO nanofillers were characterized using zeta-potential measurement, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The immobilization of ZnO nanoparticles onto HNT is feasible even at the lowest mass ratio of HNT/ZnO. The TGA results indicate that the thermal stability of the HNT-ZnO nanofillers is higher than that of the HNT. Furthermore, UV-Vis diffuse reflectance spectroscopy (UV-DRS) results show that the HNT-ZnO achieve a total reflectance as high as approximately 87.5% in the UV region, as compare with 66.9% for the HNT. In summary, the immobilization of ZnO onto HNT is a viable approach for increasing the thermal stability and improving the UV shielding of HNT.
  • Research Article

    Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach

    + Author Affiliations
    • The aim of this study was to synthesize and evaluate the thermal properties and ultraviolet (UV) resistance of zinc oxide-functionalized halloysite nanotubes (HNT-ZnO). The HNT-ZnO was synthesized using a facile solvent-free route. The properties of the HNT-ZnO nanofillers were characterized using zeta-potential measurement, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The immobilization of ZnO nanoparticles onto HNT is feasible even at the lowest mass ratio of HNT/ZnO. The TGA results indicate that the thermal stability of the HNT-ZnO nanofillers is higher than that of the HNT. Furthermore, UV-Vis diffuse reflectance spectroscopy (UV-DRS) results show that the HNT-ZnO achieve a total reflectance as high as approximately 87.5% in the UV region, as compare with 66.9% for the HNT. In summary, the immobilization of ZnO onto HNT is a viable approach for increasing the thermal stability and improving the UV shielding of HNT.
    • loading
    • [1]
      E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, and B. Delvaux, Halloysite clay minerals – a review, Clay Miner., 40(2005), No. 4, p. 383.
      [2]
      L. Guimarães, A.N. Enyashin, G. Seifert, and H.A. Duarte, Structural, electronic, and mechanical properties of single-walled halloysite nanotube models, J. Phys. Chem. C, 114(2010), No. 26, p. 11358.
      [3]
      M.X. Liu, Z.X. Jia, D.M. Jia, and C.R. Zhou, Recent advance in research on halloysite nanotubes-polymer nanocomposite, Prog. Polym. Sci., 39(2014), No. 8, p. 1498.
      [4]
      K.A. Zahidah, S. Kakooei, M.C. Ismail, and P.B. Raja, Halloysite nanotubes as nanocontainer for smart coating application: A review, Prog. Org. Coat., 111(2017), p. 175.
      [5]
      R. Kamble, M. Ghag, S. Gaikawad, and B.K. Panda, Halloysite nanotubes and applications: A review, J. Adv. Sci. Res., 3(2012), No. 2, p. 25.
      [6]
      T.S. Gaaz, A.B. Sulong, A.A.H. Kadhum, A.A. Al-Amiery, M.H. Nassir, and A.H. Jaaz, The impact of halloysite on the thermo-mechanical properties of polymer composites, Molecules, 22(2017), No. 5, art. No. 838.
      [7]
      E. Abdullayev and Y. Lvov, Halloysite clay nanotubes for controlled release of protective agents, J. Nanosci. Nanotechnol., 11(2011), No. 11, p. 10007.
      [8]
      P. Yuan, D.Y. Tan, and F. Annabi-Bergaya, Properties and applications of halloysite nanotubes: recent research advances and future prospects, Appl. Clay Sci., 112-113(2015), p. 75.
      [9]
      Y.T. Yang, Y. Chen, F. Leng, L. Huang, Z.J. Wang, and W.Q. Tian, Recent advances on surface modification of halloysite nanotubes for multifunctional applications, Appl. Sci., 7(2017), No. 12, art. No. 1215.
      [10]
      D. Rawtani and Y.K. Agrawal, Multifarious applications of halloysite nanotubes: A review, Rev. Adv. Mater. Sci., 30(2012), No. 3, p. 282.
      [11]
      M. Kotal and A.K. Bhowmick, Polymer nanocomposites from modified clays: Recent advances and challenges, Prog. Polym. Sci., 51(2015), p. 127.
      [12]
      A. Bratovčić, A. Odobašić, S. Ćatić, and I. Šestan, Application of polymer nanocomposite materials in food packaging, Croat. J. Food Sci. Technol., 7(2015), No. 2, p. 86.
      [13]
      S. Karimi and A. Ataie, Characterization of mechanothermally processed nanostructured ZnO, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 588.
      [14]
      W. Chamorro, J. Ghanbaja, Y. Battie, A.E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films, J. Phys. Chem. C, 120(2016), p. 29405.
      [15]
      S. Sabir, M. Arshad, and S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications, Sci. World J., 2014(2014), art. No. 925494.
      [16]
      E.A. Stefanescu, C. Daranga, and C. Stefanescu, Insight into the broad field of polymer nanocomposites: from carbon nanotubes to clay nanoplatelets, via metal nanoparticles, Materials, 2(2009), No. 4, p. 2095.
      [17]
      P. Uikey and K. Vishwakarma, Review of zinc oxide (ZnO) nanoparticles applications and properties, Int. J. Emerg. Technol. Comput. Sci. Electron., 21(2016), No. 2, p. 239.
      [18]
      X. Huang, M. Wang, L.D. Shao, M.G. Willinger, C.S. Lee, and X.M. Meng, Polarity-free epitaxial growth of heterostructured ZnO/ZnS core/shell nanobelts, J. Phys. Chem. Lett., 4(2013), No. 5, p. 740.
      [19]
      J.Z. Li, M.J. Zhou, Z.F. Ye, H.Q. Wang, C.C. Ma, P.W. Huo, and Y.S. Yan, Enhanced photocatalytic activity of g-C3N4–ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation, RSC Adv., 5(2015), No. 111, p. 91177.
      [20]
      H.X. Peng, X.H. Liu, W. Tang, and R.Z. Ma, Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties, Sci. Rep., 7(2017), art. No. 2250.
      [21]
      B.Y.K. Ho, Development of light-stable PVC stabilizer systems for rigid weatherable applications, J. Vinyl Tech., 6(1984), No. 4, p. 162.
      [22]
      A.L. Andrady, S.H. Hamid, X. Hu, and A. Torikai, Effects of increased solar ultraviolet radiation on materials, J. Photochem. Photobiol. B, 46(1998), No. 1-3, p. 96.
      [23]
      I.N. Gogotov and S.K. Barazov, The effect of ultraviolet light and temperature on the degradation of composite polypropylene, Int. Polym. Sci. Technol., 41(2014), No. 3, p. 55.
      [24]
      J. Tocháček and Z. Vrátníčková, Polymer life-time prediction: The role of temperature in UV accelerated ageing of polypropylene and its copolymers, Polym. Test., 36(2014), p. 82.
      [25]
      Z. Shu, Y. Zhang, J. Ouyang, and H.M. Yang, Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite, Appl. Surf. Sci., 420(2017), No. 135, p. 833.
      [26]
      J. Zhuang and G.R. Yu, Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals, Chemosphere, 49(2002), No. 6, p. 619.
      [27]
      Ö. Açışlı, S. Karaca, and A. Gürses, Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions, Appl. Clay Sci., 142(2017), p. 90.
      [28]
      W. Yu, and H.Q Xie, A review on nanofluids: preparation, stability mechanisms, and applications, J. Nanomater., 2012(2012), art. No. 435873.
      [29]
      T. Meißner, K. Oelschlägel, and A. Potthoff, Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies, Int. Nano Lett., 4(2014), No. 3, art. No. 115.
      [30]
      F.L. Yuan, H. Peng, Y. Yin, Y. Chunlei, and H. Ryu, Preparation of zinc oxide nanoparticles coated with homogeneous Al2O3 layer, Mater. Sci. Eng. B, 122(2005), No. 1, p. 55.
      [31]
      R. Marsalek, Particle size and zeta potential of ZnO, APCBEE Proc., 9(2014), p. 13.
      [32]
      P. Yuan, P.D. Southon, Z.W. Liu, M.E.R. Green, J.M. Hook, S.J. Antill, and C.J. Kepert, Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane, J. Phys. Chem. C, 112(2008), No. 40, p. 15742.
      [33]
      D. Gültekin, M. Alaf, and H. Akbulut, Synthesis and characterization of ZnO nanopowders and ZnO-CNT nanocomposites prepared by chemical precipitation route, Acta Phys. Pol. A, 123(2013), No. 2, p. 274.
      [34]
      J. Sharma, M. Vashishtha, and D.O. Shah, Crystallite size dependence on structural parameters and photocatalytic activity of microemulsion mediated synthesized ZnO nanoparticles annealed at different temperatures, Global J. Sci. Front. Res. B, 14(2014), No. 5, p. 19.
      [35]
      J.T. Kloprogge, Characterisation of halloysite by spectroscopy, Dev. Clay Sci., 7(2016), p. 115.
      [36]
      A.M. Pourrahimi, D. Liu, V. Ström, M.S. Hedenqvist, R.T. Olsson, and U.W. Gedde, Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications, J. Mater. Chem. A, 3(2015), No. 33, p. 17190.
      [37]
      B.C. Babu and S. Buddhudu, Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol-gel powder phosphors, J. Spectrocs. Dyn., 4(2014), No. 5, p. 1.
      [38]
      S. Yedurkar, C. Maurya, and P. Mahanwar, Biosynthesis of zinc oxide nanoparticles using Ixora Coccinea leaf extract—A green approach, J. Synth. Theory Appl., 5(2016), p. 1.
      [39]
      H. Sabahi, M. Khorami, A.H. Rezayan, Y. Jafari, and M.H. Karami, Surface functionalization of halloysite nanotubes via curcumin inclusion, Colloids Surf. A, 538(2018), p. 834.
      [40]
      L. Tzounis, S. Herlekar, A. Tzounis, N.D. Charisiou, M. Goula, and M. Stamm, Halloysite nanotubes noncovalently functionalised with SDS anionic surfactant and PS-b-P4VP block copolymer for their effective dispersion in polystyrene as UV-blocking nanocomposite films, J. Nanomater., 2017(2017), art No. 3852310.
      [41]
      A.H. Moharram, S.A. Mansour, M.A. Hussein, and M. Rashad, Direct precipitation and characterization of ZnO nanoparticles, J. Nanomater., 2014(2014), art. No. 716210.
      [42]
      M. Maruthupandy, M. Anand, G. Maduraiveeran, S. Suresh, A.S.H. Beevi, and R.J. Priya, Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires, Adv. Nat. Sci.: Nanosci. Nanotechnol., 7(2016), No. 4, art. No. 045011.
      [43]
      Z.C. Shen, H.J. Zhou, H.Y. Chen, H. Xu, C.H. Feng, and X.H. Zhou, Synthesis of nano-zinc oxide loaded on mesoporous silica by coordination effect and its photocatalytic degradation property of methyl orange, Nanomaterials, 8(2018), No. 5, art. No. 317.
      [44]
      M.S. Ghamsari, S. Alamdari, W. Han, and H.H. Park, Impact of nanostructured thin ZnO film in ultraviolet protection, Int. J. Nanomed., 12(2017), p. 207.
      [45]
      N. Kiomarsipour, R.S. Razavi, K. Ghani, and M. Kioumarsipour, Evaluation of shape and size effects on optical properties of ZnO pigment, Appl. Surf. Sci., 270(2013), p. 33.

    Catalog


    • /

      返回文章
      返回