Cite this article as: |
Juan-hong Liu, Yu-cheng Zhou, Ai-xiang Wu, and Hong-jiang Wang, Reconstruction of broken Si–O–Si bonds in iron ore tailings (IOTs) in concrete, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp. 1329-1336. https://doi.org/10.1007/s12613-019-1811-z |
Yu-cheng Zhou E-mail: zhouyucheng1994@hotmail.com
[1] |
D. Yang, D.H. Zeng, J. Zhang, L.J. Li, and R. Mao, Chemical and microbial properties in contaminated soils around a magnesite mine in northeast China, Land Degrad. Dev., 23(2012), No. 3, p. 256.
|
[2] |
A.S. Sánchez-López, R. Carrillo-González, M.D.C.A. González-Chávez, G.H. Rosas-Saito, and J. Vangronsveld, Phytobarriers: Plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions, Environ. Pollut., 205(2015), p. 33.
|
[3] |
S.H. Fan, J.W. Xiong, T. Xu, S.Y. Chen, and W.Q. Zhang, QFD design of machine-made sand based on independent/decomposition axiom, Procedia Eng., 174(2017), p. 442.
|
[4] |
B.S. Thomas, A. Damare, and R.C. Gupta, Strength and durability characteristics of copper tailing concrete, Constr. Build. Mater., 48(2013), p. 894.
|
[5] |
S.J. Zhao, J.J. Fan, and W. Sun, Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete, Constr. Build. Mater., 50(2014), p. 540.
|
[6] |
F.H. Han, L. Li, S.M. Song, and J.H. Liu, Early-age hydration characteristics of composite binder containing iron tailing powder, Powder Technol., 315(2017), p. 322.
|
[7] |
Y.H. Cheng, F. Huang, W.C. Li, R. Liu, G.L. Li, and J.M. Wei, Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete, Constr. Build. Mater., 118(2016), p. 164.
|
[8] |
L.X. Cai, B.G. Ma, X.G. Li, Y. Lv, Z.L. Liu, and S.W. Jian, Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness, Constr. Build. Mater., 128(2016), p. 361.
|
[9] |
B.G. Ma, L.X. Cai, X.G. Li, and S.W. Jian, Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products, J. Cleaner Prod., 127(2016), p. 162.
|
[10] |
X.Y. Huang, W. Ni, W.H. Cui, Z.J. Wang, and L.P Zhu, Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag, Constr. Build. Mater., 27(2012), No. 1, p. 1.
|
[11] |
P.L. Zhu, W.W. Ding, J. Yang, and X.Q. Qian, Determination of available alkali content of iron tailings and study on alkali activity, China Concr. Cem. Prod., 2011, No. 11, p. 20.
|
[12] |
R.D. Wu and J.H. Liu, Experimental study on the concrete with compound admixture of iron tailings and slag powder under low cement clinker system, Adv. Mater. Sci. Eng., 2018, art. No. 9816923.
|
[13] |
K.S. Moon and D.W. Fuerstenau, Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates, Int. J. Miner. Process., 72(2003), No. 1-4, p. 11.
|
[14] |
Z.Y. Gao, C.W. Li, W. Sun, and Y.H. Hu, Anisotropic surface properties of calcite: A consideration of surface broken bonds, Colloids Surf. A., 520(2017), p. 53.
|
[15] |
Y.H. Hu, Z.Y. Gao, W. Sun, and X.W. Liu, Anisotropic surface energies and adsorption behaviors of scheelite crystal, Colloids Surf. A., 415(2012), p. 439.
|
[16] |
V.M. Longo, L. Gracia, D.G. Stroppa, L.S. Cavalcante, M. Orlandi, A.J. Ramirez, E.R. Leite, J. Andrés, A. Beltrán, J.A. Varela, and E. Longo, A joint experimental and theoretical study on the nanomorphology of CaWO4 crystals, J. Phys. Chem., 115(2011), No. 41, p. 20113.
|
[17] |
T.G. Cooper and N.H. De Leeuw, A combined ab initio and atomistic simulation study of the surface and interfacial structures and energies of hydrated scheelite: introducing a CaWO4 potential model, Surf. Sci., 531(2003), No. 2, p. 159.
|
[18] |
Z.Y. Gao, W. Sun, Y.H. Hu, and X.W. Liu, Anisotropic surface broken bond properties and wettability of calcite and fluorite crystals, Trans. Nonferrous Met. Soc. China, 22(2012), No. 5, p. 1203.
|
[19] |
Z.Y. Zhang, J.F. Cui, B. Wang, H.Y. Jiang, G.X. Chen, J.H. Yu, C.T. Lin, C. Tang, A. Hartmaier, J.J. Zhang, J. Luo, A. Rosenkranz, N. Jiang, and D.M. Guo, In situ TEM observation of rebonding on fractured silicon carbide, Nanoscale, 10(2018), No. 14, p. 6261.
|
[20] |
Y. Nakashima, H. Razavi-Khosroshahi, C. Takai, and M. Fuji, Non-firing ceramics: Activation of silica powder surface for achieving high-density solidified bodies, Adv. Powder Technol., 29(2018), No. 8, p. 1900.
|
[21] |
M. Borouni, B. Niroumand, and A. Maleki, A study on crystallization of amorphous nano silica particles by mechanical activation at the presence of pure aluminum, J. Solid State Chem., 263(2018), p. 208.
|
[22] |
J.J. Li and M. Hitch, Structural and chemical changes in mine waste mechanically-activated in various milling environments, Powder Technol., 308(2017), p. 13.
|
[23] |
A. Vidmer, G. Sclauzero, and A. Pasquarello, Infrared spectra of jennite and tobermorite from first-principles, Cem. Concr. Res., 60(2014), p. 11.
|
[24] |
B.H. Hao, IR analysis of the chemical bond changes in quartz powder during superfine milling, Min. Metall. Eng., 21(2001), No. 4, p. 64.
|
[25] |
S. Kaya, C. Kaya, I.B. Obot, and N. Islam, A novel method for the calculation of bond stretching force constants of diatomic molecules, Spectrochim. Acta, Part A, 154(2016), p. 103.
|
[26] |
A.U. Shettima, M.W. Hussin, Y. Ahmad, and J. Mirza, Evaluation of iron ore tailings as replacement for fine aggregate in concrete, Constr. Build. Mater., 120(2016), p. 72.
|
[27] |
F. Saito, G.M. Mi, and M. Hanada, Mechanochemical synthesis of hydrated calcium silicates by room temperature grinding, Solid State Ionics, 101-103(1997), p. 37.
|
[28] |
F. Zapata and C. García-Ruiz, The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy, Spectrochim. Acta, Part A, 189(2018), p. 535.
|
[29] |
Y.B. Li, B. Wang, Q. Xiao, C. Lartey, and Q.W. Zhang, The mechanisms of improved chalcopyrite leaching due to mechanical activation, Hydrometallurgy, 173(2017), p. 149.
|
[30] |
Y.Z. Xu, T. Jiang, J. Wen, H.Y. Gao, J.P. Wang, and X.X. Xue, Leaching kinetics of mechanically activated boron concentrate in a NaOH solution, Hydrometallurgy, 179(2018), p. 60.
|
[31] |
A. Souri, H. Kazemi-Kamyab, R. Snellings, R. Naghizadeh, F. Golestani-Fard, and K. Scrivener, Pozzolanic activity of mechanochemically and thermally activated kaolins in cement, Cem. Concr. Res., 77(2015), p. 47.
|
[32] |
S. Zhang, Z.D. Pan, and Y.M. Wang, Synthesis and characterization of (Ni, Sb)-co-doped rutile ceramic pigment via mechanical activation-assisted solid-state reaction, Particuology, 41(2018), p. 20.
|
[33] |
P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, and J.S.J. van Deventer, Geopolymer technology: the current state of the art, J. Mater. Sci., 42(2007), No. 9, p. 2917.
|
[34] |
Z.H. Zhang, X. Yao, H.J. Zhu, and Y. Chen, Role of water in the synthesis of calcined kaolin-based geopolymer, Appl. Clay Sci., 43(2009), No. 2, p. 218.
|
[35] |
Y.M. Liew, C.Y. Heah, M.A.B. Mohd, and H. Kamarudin, Structure and properties of clay-based geopolymer cements: A review, Prog. Mater. Sci., 83(2016), p. 595.
|